Покрытия для радиаторов мощных транзисторов. Прекращаем ставить диод

Даже если и транзисторы будут верно выбраны и площадь радиатора будет правильно расчитана остается еще одна проблема - правильно установить транзисторы на радиатор.
Прежде всего слеует обратить внимание на поверхность радиатора в месте установки транзисторов или микросхем - там не должно быть лишних отверстий, поверхность должна быть ровной и не покрыта краской. В случае, если поверхность радиатора покрыта краской ее необходимо удалить наждачной бумагой, причем по мере удаления краски зернистость бумаги должна уменьшаться и когда следов краски уже не останется необходимо еще некоторое время полировать поверхность уже мелкой наждачной бумагой.
В качестве держателя наждачной бумаги довольно удобно использовать специальные насадки для отрезной машины (болгарки) или же воспользоваться шлифовальной машиной. Возможные варианты насадок показаны на рисунках.

Рисунок 25 Такой диск хорошо использовать для удаления старой краски, выравнивания поверхности радиатора в местах удаления "не нужных ребер", "черновой" шлифовки. Во время обработки радиатор обязательно закрепить в тисках подходящего размера.


Рисунок 26 Такую насадку хорошо использовать для "чистовой" шлифовки, причем использование отрезной машины не желательно - аллюминий "залипает" в наждачной бумаге и удержать машину в руках очень сложно - можно травмироваться. Форма самой насадки довольно удобно распологается в руке и ручная шлифовка не доставляет неудобств, а если в имеющуюся в насадке ввернуть винт и обмотать его изолентой - работа будет в радость.

При необходимости удалить лишь часть ребер радиатора отрезным кругом делают прорезь до несущего основания, затем делаются надрезы ребер у основания отрезным кругом малого диамера и "лишние" фрагменты отламываются. После этого, закрепив радиатор в тисках, либо крупным напильником, либо шлифовальным кругом (от отрезного он отличается гораздо большей толщиной) места отлома ребер сравнять с поверхностью несущего основания. Затем подготавливается шлифовальный инструмент. Для его изготовлнеия используется деревянный брус с ровной поверхностью. Ширина бруса должна быть немного меньше ширины удаленных ребер, а высота примерно в 2 раза больше высоты удаленных ребер - так его будет удобней держать в руке). Затем на обе "рабочие" строны бруса клеяться полоски из резины (можно приобрести бинт-резину в аптеке или кусок автомобильной камеры в будках вулканизации). Резина не должна быть натянута, используемый клей предназначен для резины или иметь полиуретановую основу. Затем на одну сторону бруса приклеевается крупнозернистая наждачная бумага для черновой шлифовки, на другую - мелкозернистая для "чистовой". Таким образом получается двухсторонее шлифовальное приспособление позволяющее довольно быстро произвести шлифовку поверхности радиатора без особых усилий. Если использовать наждачку на бумажной основе, продающуюся в автомагазинах, ее потребуется несколько больше - она забтвается интенсивней, чем та, которая продается в хозяйственных магазинах (на трапочной основе), однако в автомагазинах гораздо больший выбор по зернистости - начиная от довольно крупного зерна, до шлифовальной "нулевки".


Рисунок 27 Радиатор от "древней" телефонной станции подготовлен для установки двух усилителей УМ7293
Длина радиатора 170 мм, площадь охлаждения 4650 кв см - расчетная величина для суммарной мощности 150 Вт (2 х 75) составляет 3900 кв см.

Двольно часто приходится крепить транзисторы на радиаторы через изолирующие прокладки. Вырезать слюду не проблема, а вот с изорированным крепежом довольно часто возникают недоразумения. Корпуса транзисторов ТО-126, ТО-247, TO-3PBL (TO-264) конструктивно выполнены так, что изолированный крепеж н нужен - внутри корпса, в крепежном отверстии электрического контакта с фланцем не произойдет. А вот корпуса ТО-220, ТО-204АА без изолированного крепежа не обойдутся.
Выйти из положенияможно изготовиви такой крепеж самостоятельно, используюя обычные винты и шайбы (рис 28-а). На винт, возле головки наматываются нитки (желательно хлопчато-бумажные, но найти их на сегодня довольно не просто). Длина намотки не должна превышать 3,5 мм, увеличение диаметра не должно быть больше 3,7 мм (рис 28-б). Далее нитки пропитываются СУПЕРКЛЕЕМ, желательно СЕКУНДА или СУПЕРМОМЕНТ. Смачиватьт нтки следует аккуратно, чтобы клей не попал на находящуюуся рядом резьбу.
Пока клей подсыхает необходимо сделать "кондуктор" - приспособление, которое позволит нормировать высоту изоляционного вкладыша, находящегоя внутри фланца транзистора. Для это необходимо в пластмассовой, алиминиевой или текстолитовой детале (толщина заготовки не менее 3 мм, максиму не пренципиален, но более 5 мм брать смысла не имеет) просверлить отверстие, желательно на сверлильном станке (так угол по отношению к плоскости заготовки получится ровно 90°, что не маловажно), диаметром 2,5 мм. Затем на глубину 1,2...1,3 мм сверлится углубление диаметром 4,2 мм, углубления желательно сверлить в ручную, чтобы не перестараться с глубиной. Затем в отверстии 2,5 мм нарезается резьба М3 (рис 28-в).


Рисунок 28

Затем на винт одевается шайба и он закручивается в "кондуктор" до упора проклеенных ниток внутри углубления, шайьа укладывается на плоскость заготовки и голкой наноситься СУПЕРКЛЕЙ в места соприкосновения винта и шайбы по всему периметру соприкосновения (рис 29-а). Как только клей высохнет на получившийся желобок наматываются нитки, время от времени смачиваемые СУПЕРКЛЕЕМ до выравнивания ниток с диаметром головки винта, в идеале ниок возле шайбы должно быть немного больше, т.е. получившийся пластиковый вкладыш будет иметь форму усеченного конуса (рис 29-б). Как только клей высохнет, а для этого потребуется примерно мнут 10 (внутри намотки клей сохнет медленней) винт можно выкручивать (рис 29-в) и устананавливать транзистор на радиатор (рис 30) не забыв обработать фланец транзистора и место установки на радиаторе термопроводной пастой, например КПТ-8. Кстати сказать, на нескольких сайтах по разгону процессоров IBM проводились тесты на теплопроводность различных термопаст - КПТ-8 устойчиво везде фигурирует на вторых местах, а с учетом того, что она стоит в разы дешевле победителей, то получается лидером в пропорции цена-качество.


Рисунок 29


Рисунок 30 Крепление транзистора ТО-220 с помощью самодельного изолирующего винта.

Корпуса транзисторов тиа ТО-247 на радиатор можно устанавливать используюя имеющиеся в них отверстия, причем изолирующий крепеж не нужен, однако при сборке усилителей больших мощностей сверлить и нарезать резьбу в толстом несущем основании довольно утомительно - при четырех парах оконечников надо подготовить 8 отверстий и это только усилитель на 400-500 Вт. Тем более и силумин, и дюралюминий и уж тем более алюминий даже при сверлении налипают на режущую кромку, что приводит к поломке сверла, ну а сколько сломано метчиков при нарезании резьбы лучше не упоминать вообще.
Поэтому иногда проще испольховать дополнительные планки, которые будут прижимать сразу ВСЕ транзисторы оодной структуры, а в качестве крепежа использовать более толстые саморезы и их потребуется значительно меньшею Один из вариантов крепления показан на рисунке 31. как видно из фото 6 транзисторов прижимаются всего треми саморезами и усилие значительно больше, если бы каждый из них прижимался свои винтом. В случае ремонта (не дай Бог, конечно) и откручивать будет намного проще.


Рисунок 31 Крепление транзисторов к радиатору с помощью планки.

Смысл прижимного усилия заключается в том, что закручивая саморез по металлу (используется для крепления листового железа, продается во всех хозяйственных магазинах, резину с шайбы лучше удалить сразу - ее все равно разорвет) планка одной строной упирается в винт М3 с прокладками из винтов М4. Суммарная высота этой конструкции получается немного больше толщины корпуса транзистора, буквально на 0,3...0,8 мм, что приводит к небольшому перекосу планки и своим вторым краем она прижимает транзистор в середине корпуса.
Поэтому при при выборе планки ее ширина должна быть вырана из расчета:
- от края до середины отверстия с винтом М3 3-4 мм
- от середины отверстия с винтом М3 до середины отверстия с саморезом 6-7 мм
- от середины отверстия под саморез до края транзистора 1-2 мм
- от кра транзисора до середины его корпуса ±2 мм.
Ширина планки в мм не указывается преднамеренно, поскольку таким способом можно крепить транзисторы практически в любых корпусах.
Планку можно изготовить из стеклотекстолита, полоски которого как правило валаяются у радиолюбителей. При толщине текстолита 1,5 мм для крпеления корпусов ТО-220 текстолит необходимо сложить в трое, при креплении корпусов ТО-247 - в четверо, при креплении корпусов ТО-3PBL - в пятеро. Текстолит очищается от фольги, если фольгирован, причем хоть механическим способом, хоть травлением. Затем зачищается самой крупной наждачной бумагой и склеивается эпоксидным клеем, желательно Дзержинского производства. После того, как плоскости были зашкурены и промазаны клеем полоски складывают и ложат под пресс или зажимают в тиски, учитывая то, что излишки клея все таки будут куда то капать, то лучше место вероятных капель защить положим туда целофановый пакет, который потом можно выкинуть.
Полимеризоваться клей должен не менее суток при комнетной температуре, ускорять полимеризацию путем увеличения отверлителя не стоит - клей приобретает хрупкость, а вот прогревание наоборот - уменьшают время затвердивания клея без изменений физических свойств клея. Прогревать можно обычным феном, если нет сушильного шкафа.
Желательно придать планке дополнительнуюжесткость с однйо стороны вертикально сложенные в двое дополнительные полоски текстолита.
После высыхания эпоксидного клея, в месте механического контакта планки с корпусом транзистора необходимо наклеить сложенную в трое-четверо полоску альбомной бумаги (ширина получившейся полоски 5-8 мм, в зависимости от корпуса транзистора), предварительно промазав всю заготовку полиуретановым клеем (ТОП-ТОП, МОМЕНТ-КРИСТАЛ). Данная прослойка из бумаги придаст необходиму для равномерного прижатия эластичность не уменьшив усилия придавливания корпуса к радиатору (рис 32).
В качестве материала для прижимной планки может быть использован не только стеклотекстолит, то и уголок или дюралюминиевый профиль или другой, достаточно крепкий материал.


Рисунок 32

Небольшой технологический совет - не смотра на то, что саморезы имеют форму сверла и при крепелнии листового железа не требуют засверливания при сверлении радиатора, в местах закручивания самореза, лучше просверлить отверстия диаметром 3 мм, поскольку толщина алюминия намного больше материала, под который расчитаны данные саморезы и алюминий довольно сильно залипает на режущей кромку (вы может просто свернуть головку при попытке без сверления закрутить саморезх в алюминий или силумин).
Использование крепежных планок можно производить и при установке на радиатор "разнокаллиберных" транзисторов" используя небольшие утолшения планки в местах контакта с более тонкими корпусами, а учитывая то, что более тонки транзисторы и греются как правило меньше, то недостаток толщины можно компенсировать солженным в несколько слоев двухсторонним скотчем из пористой резины.
Остался еще один не решенный вопрос - мощность блока питания, но об этом уже сказанно здесь
Теперь надеемся, что самодельные усилители мощности будут умирать значительно реже....

Страница подготовлена по материалам ОГРОМНОГО количества сайтов о теплотехнике, аудиотехнике, сайтов о разгонах процессоров компьютеров и способах охлаждения, путем замеров и сравнений заводских вариантов усилителй мощности, использовались сообщения и переписки посетителей форумов ПАЯЛЬНИК и НЕМНОГО ЗВУКОТЕХНИКИ

Радиаторы и охлаждение.

http://radiokot.ru/articles/02/

В физике, электротехнике и атомной термодинамике есть известный закон - ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы - так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.
Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе. Процесс отдачи тепла мы с вами назовем охлаждением.
Наши электронные конструкции тоже рассеивают немало тепла, одни - больше, другие - меньше. Греются стабилизаторы напряжения, греются усилители, греется транзистор, управляющий релюшкой или даже просто мелким светодиодом, разве что греется ну совсем немного. Ладно, если греется немного. Ну а если он жарится так, что руку держать нельзя? Давайте пожалеем его и попробуем как-нибудь ему помочь. Так сказать, облегчить его страдания.
Вспомним устройство батареи отопления. Да, да, та самая обычная батарея, что греет комнату зимой и на которой мы сушим носки и футболки. Чем больше батарея, тем больше тепла будет в комнате, так ведь? По батарее протекает горячая вода, она нагревает батарею. У батареи есть важная вещь - количество секций. Секции контактируют с воздухом, передают ему тепло. Так вот, чем больше секций, то есть чем больше занимаемая площадь батареи, тем больше тепла она может нам отдать. Приварив еще парочку секций, мы сможем сделать теплее нашу комнату. Правда, при этом горячая вода в батарее может остыть, и соседям ничего не останется.
Рассмотрим устройство транзистора.

На медном основании (фланце) 1 на подложке 2 закреплен кристалл 3 . Он подключается к выводам 4 . Вся конструкция залита пластмассовым компаундом 5 . У фланца есть отверстие 6 для установки на радиатор.
Вот это по сути та же самая батарея, посмотрите! Кристалл греется, это как горячая вода. Медный фланец контактирует с воздухом, это секции батареи. Площадь контакта фланца и воздуха - это место нагревания воздуха. Нагревающийся воздух охлаждает кристалл.

Как сделать кристалл холоднее? Устройство транзистора мы изменить не можем, это понятно. Создатели транзистора об этом тоже подумали и для нас, мучеников, оставили единственную дорожку к кристаллу - фланец. Фланец - это как одна-единственная секция у батареи - жарить жарит, а тепла воздуху не передается - маленькая площадь контакта. Вот тут предоставляется простор нашим действиям! Мы можем нарастить фланец, припаять к нему еще "парочку секций", то бишь большую медную пластинку, благо фланец сам медный, или же закрепить фланец на металлической болванке, называемой радиатором. Благо отверстие во фланце приготовлено под болт с гайкой.

Что же такое радиатор? Я твержу уже третий абзац про него, а толком так ничего и не рассказал! Ладно, смотрим:

Как видим, конструкция радиаторов может быть различной, это и пластинки, и ребра, а еще бывают игольчатые радиаторы и разные другие, достаточно зайти в магазин радиодеталей и пробежаться по полке с радиаторами. Радиаторы чаще всего делают из алюминия и его сплавов (силумин и другие). Медные радиаторы лучше, но дороже. Стальные и железные радиаторы применяются только на очень небольшой мощности, 1-5Вт, так как они медленно рассеивают тепло.
Тепло, выделяемое в кристалле, определяется по очень простой формуле P=U*I , где P - выделяемая в кристалле мощность, Вт, U = напряжение на кристалле, В, I - сила тока через кристалл, А. Это тепло проходит через подложку на фланец, где передается радиатору. Далее нагретый радиатор контактирует с воздухом и тепло передается ему, как следующему участнику нашей системы охлаждения.

Посмотрим на полную схему охлаждения транзистора.

У нас появились две штуки - это радиатор 8 и прокладка между радиатором и транзистором 7 . Её может и не быть, что и плохо, и хорошо одновременно. Давайте разбираться.

Расскажу о двух важных параметрах - это тепловые сопротивления между кристаллом (или переходом, как его еще называют) и корпусом транзистора - Rпк и между корпусом транзистора и радиатором - Rкр. Первый параметр показывает, насколько хорошо тепло передается от кристалла к фланцу транзистора. Для примера, Rпк, равное 1,5градуса Цельсия на ватт, объясняет, что с увеличением мощности на 1Вт разница температур между фланцем и радиатором будет 1,5градуса. Иными словами, фланец всегда будет холоднее кристалла, а насколько - показывает этот параметр. Чем он меньше, тем лучше тепло передается фланцу. Если мы рассеиваем 10Вт мощности, то фланец будет холоднее кристалла на 1,5*10=15градусов, а если же 100Вт - то на все 150! А поскольку максимальная температура кристалла ограничена (не может же он жариться до белого каления!), фланец надо охлаждать. На эти же 150 градусов.

К примеру:
Транзистор рассеивает 25Вт мощности. Его Rпк равно 1,3градуса на ватт. Максимальная температура кристалла 140градусов. Значит, между фланцем и кристаллом будет разница в 1,3*25=32,5градуса. А поскольку кристалл недопустимо нагревать выше 140градусов, от нас требуется поддерживать температуру фланца не горячее, чем 140-32,5=107,5градусов. Вот так.
А параметр Rкр показывает то же самое, только потери получаются на той самой пресловутой прокладке 7. У нее значение Rкр может быть намного больше, чем Rпк, поэтому, если мы конструируем мощный агрегат, нежелательно ставить транзисторы на прокладки. Но всё же иногда приходится. Единственная причина использовать прокладку - если нужно изолировать радиатор от транзистора, ведь фланец электрически соединен со средним выводом корпуса транзистора.

Вот давайте рассмотрим еще один пример.
Транзистор жарится на 100Вт. Как обычно, температура кристалла - не более 150градусов. Rпк у него 1градус на ватт, да еще и на прокладке стоит, у которой Rкр 2градуса на ватт. Разница температур между кристаллом и радиатором будет 100*(1+2)=300градусов. Радиатор нужно держать не горячее, чем 150-300 = минус 150 градусов: Да, дорогие мои, это тот самый случай, который спасет только жидкий азот: ужос!
Намного легче живется на радиаторе транзисторам и микросхемам без прокладок. Если их нет, а фланцы чистенькие и гладкие, и радиатор сверкает блеском, да еще и положена теплопроводящая паста, то параметр Rкр настолько мал, что его просто не учитывают.

Охлаждение бывает двух типов - конвекционное и принудительное. Конвекция, если помним школьную физику, это самостоятельное распространение тепла. Так же и конвекционное охлаждение - мы установили радиатор, а он сам там как-нибудь с воздухом разберется. Радиаторы конвекционного типа устанавливаются чаще всего снаружи приборов, как в усилителях, видели? По бокам две металлические пластинчатые штуковины. Изнутри к ним привинчиваются транзисторы. Такие радиаторы нельзя накрывать, закрывать доступ воздуха, иначе радиатору некуда будет девать тепло, он перегреется сам и откажется принимать тепло у транзистора, который долго думать не будет, перегреется тоже и: сами понимаете что будет. Принудительное охлаждение - это когда мы заставляем воздух активнее обдувать радиатор, пробираться по его ребрам, иглам и отверстиям. Тут мы используем вентиляторы, различные каналы воздушного охлаждения и другие способы. Да, кстати, вместо воздуха запросто может быть и вода, и масло, и даже жидкий азот. Мощные генераторные радиолампы частенько охлаждаются проточной водой.
Как распознать радиатор - для конвекционного он или принудительного охлаждения? От этого зависит его эффективность, то есть насколько быстро он сможет остудить горячий кристалл, какой поток тепловой мощности он сможет через себя пропустить.
Смотрим фотографии.

Первый радиатор - для конвекционного охлаждения. Большое расстояние между ребрами обеспечивает свободный поток воздуха и хорошую теплоотдачу. На второй радиатор сверху одевается вентилятор и продувает воздух сквозь ребра. Это принудительное охлаждение. Разумеется, использовать везде можно и те, и те радиаторы, но весь вопрос - в их эффективности.
У радиаторов есть 2 параметра - это его площадь (в квадратных сантиметрах) и коэффициент теплового сопротивления радиатор-среда Rрс (в Ваттах на градус Цельсия). Площадь считается как сумма площадей всех его элементов: площадь основания с обеих сторон + площадь пластин с обеих сторон. Площадь торцов основания не учитывается, так там квадратных сантиметров ну совсем немного будет.

Пример:
радиатор из примера выше для конвекционного охлаждения.
Размеры основания: 70х80мм
Размер ребра: 30х80мм
Кол-во ребер: 8
Площадь основания: 2х7х8=112кв.см
Площадь ребра: 2х3х8=48кв.см.
Общая площадь: 112+8х48=496кв.см.

Коэффициент теплового сопротивления радиатор-среда Rрс показывает, на сколько увеличится температура выходящего с радиатора воздуха при увеличении мощности на 1Вт. Для примера, Rрс, равное 0,5 градуса Цельсия на Ватт, говорит нам, что температура увеличится на полградуса при нагреве на 1Вт. Этот параметр считается трехэтажными формулами и нашим кошачьим умам ну никак не под силу: Rрс, как и любое тепловое сопротивление в нашей системе, чем меньше, тем лучше. А уменьшить его можно по-разному - для этого радиаторы чернят химическим путем (например алюминий хорошо затемняется в хлорном железе - не экспериментируйте дома, выделяется хлор!), еще есть эффект ориентировать радиатор в воздухе для лучшего прохождения его вдоль пластин (вертикальный радиатор лучше охлаждается, чем лежачий). Не рекомендуется красить радиатор краской: краска - лишнее тепловое сопротивление. Если только слегка, чтобы темненько было, но не толстым слоем!

В приложении есть маленький программчик, в котором можно посчитать примерную площадь радиатора для какой-нибудь микросхемы или транзистора. С помощью него давайте рассчитаем радиатор для какого-нибудь блока питания.
Схема блока питания.

Блок питания выдает на выходе 12Вольт при токе 1А. Такой же ток протекает через транзистор. На входе транзистора 18Вольт, на выходе 12Вольт, значит, на нем падает напряжение 18-12=6Вольт. С кристалла транзистора рассеивается мощность 6В*1А=6Вт. Максимальная температура кристалла у 2SC2335 150градусов. Давайте не будем эксплуатировать его на предельных режимах, выберем температуру поменьше, для примера, 120градусов. Тепловое сопротивление переход-корпус Rпк у этого транзистора 1,5градуса Цельсия на ватт.
Поскольку фланец транзистора соединен с коллектором, давайте обеспечим электрическую изоляцию радиатора. Для этого между транзистором и радиатором положим изолирующую прокладку из теплопроводящей резины. Тепловое сопротивление прокладки 2градуса Цельсия на ватт.
Для хорошего теплового контакта капнем немного силиконового масла ПМС-200. Это густое масло с максимальной температурой +180градусов, оно заполнит воздушные промежутки, которые обязательно образуются из-за неровности фланца и радиатора и улучшит передачу тепла. Многие используют пасту КПТ-8, но и многие считают её не самым лучшим проводником тепла.
Радиатор выведем на заднюю стенку блока питания, где он будет охлаждаться комнатным воздухом +25градусов.
Все эти значения подставим в программку и посчитаем площадь радиатора. Полученная площадь 113кв.см - это площадь радиатора, рассчитанная на длительную работу блока питания в режиме полной мощности - дольше 10часов. Если нам не нужно столько времени гонять блок питания, можно обойтись радиатором поменьше, но помассивнее. А если мы установим радиатор внутри блока питания, то отпадает необходимость в изолирующей прокладке, без нее радиатор можно уменьшить до 100кв.см.
А вообще, дорогие мои, запас карман не тянет, все согласны? Давайте думать о запасе, чтобы он был и в площади радиатора, и в предельных температурах транзисторов. Ведь ремонтировать аппараты и менять пережаренные транзисторы придется не кому-нибудь, а вам самим! Помните об этом!
Удачи.



Часто необходимо, как мы видели в приведенных выше схемах, использовать мощные транзисторы или другие сильноточные устройства, такие, как КУВ или силовые выпрямители, рассеивающие мощности во много ватт. Недорогой и очень распространенный мощный транзистор 2N3055, правильно смонтированный, рассеивает мощность до 115 Вт. Все мощные устройства выпускаются в корпусах, обеспечивающих тепловой контакт между их металлической поверхностью и внешним радиатором. Во многих случаях металлическая поверхность устройства связана электрически с одним из выводов (например, у мощного транзистора она всегда связана с коллектором).


В принципе задача теплоотвода - удержать переходы транзисторов или других устройств при температуре, не превышающей указанной для них максимальной рабочей температуры. Для кремниевых транзисторов в металлических корпусах максимальная температура переходов обычно равна 200°С, а для транзисторов в пластмассовых корпусах равна 150°С. Зная эти параметры, проектировать теплоотвод просто: зная мощность, которую прибор будет рассеивать в данной схеме, подсчитываем температуру переходов с учетом теплопроводности транзистора, радиатора и максимальной рабочей температуры окружающей транзистор среды. Затем выбираем такой радиатор, чтобы температура переходов была намного ниже указанной изготовителем максимальной. Здесь разумно перестраховаться, так как при температурах, близких к максимальной, транзистор быстро выходит из строя.


Тепловое сопротивление. При расчете радиатора используют тепловое сопротивление Θ, которое равняется отношению величины перепада температур в градусах к передаваемой мощности. Если теплопередача происходит только путем теплопроводности, то тепловое сопротивление - величина постоянная, не зависящая от температуры, а зависящая только от устройства теплового контакта. Для последовательного ряда тепловых контактов общее температурное сопротивление равно сумме тепловых сопротивлений отдельных соединений. Таким образом, для транзистора смонтированного на радиаторе, общее тепловое сопротивление при передаче тепла от p-n - перехода на внешнюю среду равно сумме тепловых сопротивлений переход - корпус Θ пк, соединения корпус - радиатор Θ кр и перехода радиатор - среда Θ рс. Таким образом, температура p-n - перехода будет равна

Т п =Т с + (Θ пк + Θ кр + Θ рс)Р

где Р- рассеиваемая мощность


Рассмотрим пример. Приведенная ранее схема источника питания с внешним проходным транзистором имеет максимум рассеиваемой на транзисторе мощности 20 Вт при не стабилизированном входном напряжении +15 В (10 В падения напряжения, 2 А). Предположим, что эта схема должна работать при окружающей температуре 50°С - не так уж невероятно для компактно расположенного электронного оборудования, - и постараемся удержать температуру переходов ниже 150°С, т.е. намного ниже, чем указанные изготовителем 200°С. Тепловое сопротивление от перехода к корпусу равно 1,5 °С/Вт. Мощный транзистор в корпусе ТО-3, смонтированный со специальной прокладкой, обеспечивающей электрическую изоляцию и тепловой контакт, имеет тепловое сопротивление от корпуса к радиатору порядка 0,3 °С/Вт. И наконец, радиатор фирмы Wakefield, модель 641 (рис. 6.6), имеет тепловое сопротивление на границе с внешней средой порядка 2,3 °С/Вт. Поэтому общее тепловое сопротивление между р-n - переходом и внешней средой будет равно 4,1 °С/Вт. При рассеиваемой мощности 20 Вт температура перехода будет на 84°С выше температуры окружающей среды, т.е. будет равна 134°С (при максимальной внешней температуре для данного случая). Итак, выбранный радиатор пригоден, а если необходимо сэкономить пространство, то можно выбрать и несколько меньший.


Замечания о радиаторах.

1. В схемах, где рассеиваются большие мощности, например несколько сотен ватт, может понадобиться принудительное воздушное охлаждение. Для этого выпускаются большие радиаторы, предназначенные для работы с вентиляторами и имеющие очень низкое тепловое сопротивление от радиатора к внешней среде - от 0.05 до 0.2 °С/Вт.

2. Если транзистор должен быть электрически изолирован от радиатора, как это обычно и необходимо, особенно если несколько транзисторов установлено на одном радиаторе, то используют тонкие изолирующие прокладки между транзисторами и радиаторами, а также изолирующие вкладыши для монтажных винтов. Прокладки выпускаются под стандартные транзисторные корпусы и делаются из слюды, изолированного алюминия и двуокиси бериллия Ве0 2 . При использовании теплопроводящей смазки они создают дополнительное тепловое сопротивление от 0,14 °С/Вт (бериллиевые) до 0,5 °С/Вт. Хорошей альтернативой классическому сочетанию прокладка из слюды плюс смазка могут служить изоляторы на основе кремнийорганических соединений без использования смазки с дисперсионным покрытием теплопроводным компаундом; обычно это нитрид бора или окись алюминия. Эти изоляторы чисты и сухи, удобны в употреблении, вам не грозит испачкать руки, одежду и электронику белым липким веществом, к тому же вы экономите уйму времени. Тепловое сопротивление этих изоляторов составляет 0,2 - 0.4 °С/Вт, т. е. вполне сравнимое с величинами «грязного» метода. Фирма Bergquist называет свою продукцию «Sil-pad», Chomerics - «Cho - Therm», продукта SPC известна под названием «Koolex», Xhermalloy называет свою «Thermasil». Мы в своей работе с успехом используем все эти изоляторы.

3. Малые радиаторы выпускаются в виде простых насадок на малогабаритные корпусы транзисторов (подобные стандартному ТО-5). В случае малой рассеиваемой мощности (1 - 2 Вт) этого вполне достаточно и не надо мучиться, монтируя транзистор куда-то на радиатор, а потом тащить от него провода обратно к схеме (пример см. на рис. 6.6). Кроме того, существуют различные типы малых радиаторов для работы с мощными ИМС в пластмассовых корпусах (многие стабилизаторы, а также мощные транзисторы имеют такие корпуса) которые монтируются прямо на плату под корпус ИМС. Это очень удобно в схемах, где рассеивается мощность не больше нескольких ватт (пример см. также на рис. 6.6).

4. Иногда удобно монтировать мощный транзистор прямо на шасси или корпус прибора. В этом случае лучше использовать консервативный метод проектирования (корпус должен оставаться холодным), так как нагретый корпус нагреет и другие элементы схемы и сократит их сроки службы.

5. Если транзистор смонтирован на радиаторе без изоляции, то надо изолировать радиатор от шасси. Применение изолирующих прокладок рекомендуется всегда (например, модель Wakefield 103), если, конечно, корпус транзистора не заземлен по идее. Если транзистор изолирован от радиатора, то радиатор можно закрепить прямо на шасси. Но если транзистор выступает наружу из прибора (скажем, радиатор его смонтирован на внешней стогне задней стенки), то имеет смысл изолировать этот транзистор, чтобы никто до него случайно не дотронулся и не замкнул на землю (изолировать можно, например, прокладкой Thermalloy 8903N).

6. Тепловое сопротивление радиатор - вншняя среда обычно указывается, когда рёбра радиатора установлены вертикально и обдуваются воздухом без помех. Если же радиатор установлен как-нибудь по-другому или есть препятствия на пути потока воздуха, то эффективность радиатора снижается (повышается тепловое сопротивление); лучше всего монтировать радиатор на задней стенке прибора, ставя ребро вертикально.


Рис. 6.6. Радиаторы для мощных транзисторов. Фирмы - изготовители: I - IERC, T - Thermalloy, W - Wakefield, (размеры даны в дюймах, 1" = 25.4 мм).


Упражнение 6.2. Транзистор 2N5320. имеющий тепловое сопротивление переход-корпус 17,5 °С/Вт, снабжен съемным радиатором типа IERC TXBF (см. рис. 6.6). Максимальная допустимая температура перехода 200°С. Какая мощность может рассеиваться такой конструкцией при внешней температуре 25°С? Как эта мощность уменьшается с каждым градусом увеличения температуры окружающей среды?



Есть такой параметр, как тепловое сопротивление. Он показывает, на сколько градусов нагревается объект, если в нем выделяется мощность 1 Вт. К сожалению, в справочниках по транзисторам такой параметр приводится редко. Например, для транзистора в корпусе ТО-5 тепловое сопротивление равно 220°С на 1 Вт. Это означает, что если в транзисторе выделяется 1 Вт мощности, то он нагреется на 220°С. Если допускать нагрев не более чем до 100°С, например, на 80°С относительно комнатной температуры, то получим, что на транзисторе должно выделяться не более 80/220 = 0,36 Вт. В дальнейшем будем считать допустимым нагрев транзистора или тиристора не более, чем на 80°С.

Существует грубая формула для расчета теплового сопротивления теплоотвода Q = 50/ VS °С/Вт, (1) где S — площадь поверхности теплоотвода, выраженная в квадратных сантиметрах. Отсюда площадь поверхности можно рассчитать по формуле S = 2.
Рассмотрим в качестве примера расчет теплового сопротивления конструкции, показанной на рисунке. Конструкция теплоотвода состоит из 5 алюминиевых пластин, собранных в пакет. Предположим, W=20 см, D=10 см, а высота (на рисунке не показана) 12 см, каждый «выступ» имеет площадь 10х12 = 120 см2, а с учетом обеих сторон 240 см2. Десять «выступов» имеют площадь 2400 см2, а пластина две стороны х 20 х 12 = 480 см2. Итого получаем S=2880 см2. По формуле (1) рассчитываем Q=0,93°С/Вт. При допустимом нагреве на 80°С получаем мощность рассеяния 80/0,93 = 90 Вт.

Теперь проведем обратный расчет.
Предположим, нужен блок питания с выходным напряжением 12 В и током 10 А. После выпрямителя имеем 17 В, следовательно, падение напряжения на транзисторе составляет 5 В, а значит, мощность на нем 50 Вт. При допустимом нагреве на 80°С получим требуемое тепловое сопротивление Q=80/50=1,6°C/Вт. Тогда по формуле (2) определим S= 1000 cм2.

Литература
Конструктор № 4/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 20.09.2014

    Общие сведения об электропроводках Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями. Скрытая электропроводка имеет ряд преимуществ перед открытой: она более безопасна и долговечна, защищена от механических повреждений, гигиенична, не загромождает стен и потолков. Но она дороже, и ее труднее заменить при необходимости. …

  • 27.09.2014

    На основе К174УН7 можно собрать не сложный генератор с 3 под диапазонами: 20…200, 200…2000 и 2000…20000Гц. ПОС определяет частоту генерируемых колебаний, она построена на элементах R1-R4 и С1-С6. Цепь отрицательной ОС уменьшающая нелинейные искажения сигнала и стабилизирующая его амплитуду образована резистором R6 и лампой накаливания Н1. При указных номиналах схемы …

= ([Температура в горячей точке, грЦ ] - [Температура в холодной точке, грЦ ]) / [Рассеиваемая мощность, Вт ]

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

[Температура кристалла силового элемента, грЦ ] = [Температура окружающей среду, грЦ ] + [Рассеиваемая мощность, Вт ] *

где [Полное тепловое сопротивление, грЦ / Вт ] = + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт ] + (для случая с радиатором),

или [Полное тепловое сопротивление, грЦ / Вт ] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт ] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт ] (для случая без радиатора).

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой . Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт ] = [120, (грЦ * кв. см) / Вт ] / [Площадь радиатора или металлической части корпуса элемента, кв. см ].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см. ] = Пи * ([Длина правого вывода, см. ] * [Диаметр правого вывода, см. ] + [Длина левого вывода, см. ] * [Диаметр левого вывода, см. ])

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода - радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Несколько элементов на одном радиаторе.

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

[Температура радиатора, грЦ ] = [Температура окружающей среды, грЦ ] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт ] * [Суммарная мощность, Вт ]

[Температура кристалла, грЦ ] = [Температура радиатора, грЦ ] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт ] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт ]) * [Мощность, рассеиваемая элементом, Вт ]