Регулятор сетевого напряжения. Регулятор напряжения схема

Регулятор напряжения своими руками

В этой статье разберем как самому сделать несложный регулятор напряжения на одном переменном резисторе, постоянном резисторе, и транзисторе . Что пригодится для регулирования напряжения на блоке питания или универсальном адаптере для питания устройств.

А так как наша схема для начинающих.

То рассмотрим все аспекты.

Для начала рассмотрим схему устройства. Ее вы видите ниже, и можно увеличить, кликнув нажатием.



Начинаем собирать, сначала для удобства чертеж можно распечатать. Печатаем его 1 к 1. И вырезаем без картинок.Прикладываем к текстолиту со стороны фольги.Так нам будет легче наметить и просверлить отверстия.



После того как просверлили отверстия. Рисуем дорожки на фольге текстолита пермонентным маркером.



Обрезаем остатки тестолита и приступим к пайке компонентов. Сначала припаивываем транзистор, только будьте внимательны - не перепутайте ножки на транзисторе местами (эмиттер и базу).

Дальше устанавливаем резистор на 1ком, затем впаиваем проводами переменный резистор на 10ком. Можно поставить и другой резистор, сразу припаять резистор без этих соплей, но мой резистор не позволил этого, и пришлось повесить на провода... Остается припаять 4 вывода к питанию, и к выходам.



Регулятор напряжения служит для автоматического поддержания в заданных пределах напряжения автомобильного генератора, работающего в широком диапазоне изменения скоростей вращения ротора и тока нагрузки. Основным техническим требованием в регулирующим устройством является поддержание в весьма узких пределах выходного напряжения генератора, что в свою очередь диктуется надежностью работы и долговечность различных потребителей.

Регулирование напряжения до недавнего времени осуществляли вибрационные регуляторы. В последние годы на автомобилях устанавливают контактно-транзисторные и бесконтактные регуляторы, выполненные как на дискетных элементах, так и по интегральной технологии.

В контактно-транзисторных регуляторах напряжения функцию регулирующего элемента, включенного в цепь обмотки возбуждения генератора, выполняет транзистор, а управляющего и измерительного – вибрационное реле. Бесконтактные регуляторы в дискретном и интегральном исполнении в качестве регулирующего и управляющего элементов используют транзисторы и тиристора, а измерительного – стабилизаторы. Замена вибрационных регуляторов напряжения транзисторными позволила удовлетворить требования, предъявляемые к электрооборудованию.

Стало возможным увеличить возбуждение генераторов до 3 А и более; достичь высокой точности и стабильности регулируемого напряжения; повысить срок службы регулятора напряжения; упростить техническое обслуживание системы электропитания автомобиля. В настоящее время применяют транзисторные реле – регуляторы напряжения РР-362 и РР-350 в схемах с генераторами типа Г 250. Транзисторный регулятор напряжения РР-356 предназначен для работы с генератором Г272. Интегральные регуляторы напряжения Я 112А предназначены для работы с 14 – вольтовым генератором.

Интегральный регулятор напряжения Я 120 предназначен к генератору Г272 большегрузных автомобилей. На рис. 1 показан схема контактно-транзисторного регулятора. Регулятор состоит из транзистора Т (регулирующий элемент), вибрационного реле-регулятора напряжения РН (управляющий элемент) и реле защиты РЗ. Реле-регулятор имеет одну шунтовую обмотку РНо, включенную на выпрямленное напряжение генератора через запирающий диод Д2, ускоряющий резистор Rу и резистор термокомпенсации Rт. Реле имеет нормально разомкнутые контакты, включенные в цепь управления транзистора. Когда скорость вращения ротора генератора не велика и напряжение генератора еще не достигло заданной величины, контакты РН разомкнуты, транзистор Т отперт. База транзистора соединяется с полюсом источника питания и транзистор запирается. В этом случае ток возбуждения проходит через добавочный Rд и ускоряющий Rу резисторы, шунтирующие транзистор, что вызывает снижение тока возбуждения и, следовательно, напряжение генератора.

Рис.1.

Контакты реле-регулятора снова размыкаются и транзистор отпирается. Далее процесс повторяется с определенной частотой. Rу – позволяет увеличить частоту срабатывания и отпускания реле-регулятора напряжения РН из-за изменения падения напряжения на резисторе при отпертом и запертом состоянии транзистора, приводящее к более резкому изменению напряжения на обмотке РНо. Диод Д2, включенный в цепь эмиттера транзистора Т, служит для активного запирания выходного транзистора, которое необходимо для обеспечения надежной работы транзистора при повышенной температуре.

Запирание осуществляется за счет того, что падение напряжения на Д2 от тока, протекающего через Rу и Rд, когда транзистор заперт, приложено к переходу эмиттер – база транзистора в запирающем направлении. Термокомпенсационный резистор Рт необходим для поддержания напряжения на заданном уровне в условиях широкого изменения температуры. Диод Дг служит для гашения ЭДС самоиндукции обмотки возбуждения и защиты транзистора от перенапряжения в момент его запирания. Реле защиты РЗ предназначено для защиты транзистора от больших токов, возникающих в случае короткого замыкания зажима Ш на корпус генератора или регулятора. Реле имеет основную обмотку РЗо, включенную последовательно с ОВГ, вспомогательную РЗв, включенную параллельно ОВГ и удерживающую РЗу, РЗо и РЗв включены встречно.

При КЗ ток через РЗо увеличивается, одновременно шунтируется РЗв, замыкаются контакты РЗ, запирается транзистор и включается удерживающая обмотка РЗу. Резисторы Rу и Rд, ограничивают ток короткого замыкания до 0.3 А. Только после устранения короткого замыкания и отключения АБ РЗу отключит РЗ. Диод Д1 применен для исключения срабатывания РЗ при замыкании контактов регулятора напряжения РН, так как при отсутствии этого диода РЗу будет включена на напряжение генератора. Надежность регулятора обусловлена снижением разрывной мощности контактов. Однако износ, подгар и эррозия контактов, наличие пружинной и колебательных систем часто служит причиной выхода их строя. На рис. 2 показан бесконтактный регулятор напряжения типа РР-350, который применяется в автомобилей ГАЗ «Волга».

Рис. 2.

Бесконтактный регулятор напряжения состоит из транзисторов Т2 и Т3 – германиевых; Т1 – кремниевого, резисторов R6 – R9 и диодов Д2 и Д3, стабилитрона Д1, входного делителя напряжения R1, R2, R3, Rт и дросселя Др. Если выпрямленное напряжение генератора, приложенное к входному делителю, меньше величины, на которую настроен регулятор, то стабилитрон Д1 запер, а транзисторы Т2 и Т3 отперты и по цепи (+) выпрямителя – диод Д3 – переход эмиттер – коллектор транзистора ТЗ – обмотка возбуждения ОВГ – (--) протекает максимальный ток возбуждения. Как только выпрямленное напряжение достигает заданного уровня, стабилитрон «пробивается» и транзистор Т1 отпирается. Сопротивление этого транзистора становится минимальным и шунтирует эммитерно-базовые переходы транзисторов Т2 и Т3, что приводит к их запиранию. Ток ОВГ начинает спадать. Переключение схемы производится с определенной частотой и создается такая величина тока возбуждения, при которой средняя величина регулируемого напряжения поддерживается на заданном уровне.

Для повышения четкости переключения транзисторов и уменьшения времени перехода схемы из одного состояния в другое в ней предусмотрена цепочка обратной связи, включающая резистор R4. При повышении входного напряжения, то (+) выпрямителя – диод Д3 – переход эмиттер – база транзистора Т3 – диод Д2 – переход эмиттер – коллектор транзистора Т2 – резистор R4 – обмотка дросселя Др – (-), уменьшается, что приводит к уменьшению падения напряжения на Др. В этом случае падение напряжения на стабилитроне Д1 увеличивается, вызывая возрастания базового тока Т1 и более быстрое переключение этого транзистора. При понижении входного напряжения цепочка обратной связи способствует быстрому запиранию транзистора Т1.

Для активного запирания выходного транзистора Т3 и надежной работы при повышенной окружающей температуре в эммитерную цепь транзистора Т3 включен диод Д3. Падение напряжения на диоде выбирается с помощь резистора R9. Диод Д2 служит для улучшения запирания транзистора Т2 при отпертом транзисторе Т1 благодаря дополнительному падению напряжения на этом диоде. Для фильтрации входного напряжения применен дроссель Др. Терморезистор Rт компенсирует изменение падения напряжения на переходе эмиттер – база транзистора Т1 и стабилизатора Д1 от температуры окружающей среды. Регулятор напряжения для большегрузных автомобилей МАЗ, КамАЗ, КрАЗ выполняется на кремниевых транзисторах (рис. 3).

Рис. 3.

Схема регулятора упрощена по сравнению с РР-350, уменьшено количество транзисторов. Диоды Д2 и Д3, включенные в базовую цепь транзистора Т2, делают возможным применение транзисторов с более широкими допусками на параметры, в частности на величину напряжения насыщения Т1. При питании 24 В предусмотрено применение в делителе напряжения дополнительной цепочки включающей термистор Rт и резистор R7. На рис. 4 представлена схема регулятора напряжения РР132А, применяемых на УАЗ.


Рис. 4. Схема регулятора напряжения РР 132А:

1 – дроссель; 2, 3, 4, 5, 6, 13, 14, 15, 16, 18, 20, 22, 23, 24 – резисторы; 7 – диод; 8, 9, 17 – транзисторы; 10, 11, 12, 19 – стабилитроны. Данная схема является бесконтактным транзисторным регулятором напряжения, который имеет три диапазона настройки регулируемого напряжения. Изменение диапазонов регулируемого напряжения осуществляется переключением 25, расположенным на верхней части корпуса регулятора. Регулируемое напряжение при частоте вращения ротора генератора - 35 мин-1, нагрузке 14 А, температуре 20 o

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 - 13 вольт. И общеизвестная на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.


КТ829 - мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты - видно действительно его место там а не в регуляторах напряжения.


Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос - «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2


В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.


У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 - 37 вольт. Да, имеется падение напряжения вход - выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор . Автор Babay iz Barnaula .

Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

В нескольких номерах журнала "Радиоаматор" были напечатаны схемы регуляторов сетевого напряжения на тиристорах, но такие устройства имеют ряд существенных недостатков, ограничивающих их возможности. Во-первых, они внос0n,"en":["YL41FPH_H-s","fYSeVCtK6fE","00-fB9E2v40","JRjGFjnD9Wo","w8D8GrgHKfM","0uM6MsWA-CU","fYSeVCtK6fE","Y4NL4zdvaHw","Adm9kqvP3b8"],"de":["qfS_Y60WdLE","uk-4vsS_ZAc","j6X2n7WMGOw"],"es":["SSbHCadxdpY","sFlwgdQw_nE","SSbHCadxdpY","03DfI9r63mM","4VwPsQ4CPRQ","03DfI9r63mM","qfW8hAMe_44","sFlwgdQw_nE","1QeikGzeV_8","03DfI9r63mM","hUH6vtLLdcI"],"pt":["4VwPsQ4CPRQ","4gu_V4NS9Ps","V4Yluy6bu2w","4VwPsQ4CPRQ","01-8UmRTiWU","BlwAKj8Y7MI","V4Yluy6bu2w","820VUzYJDDg","4VwPsQ4CPRQ"],"fr":["uouZ7OixVmU","uouZ7OixVmU","c2WDbTCrCuw","ot9aNy_Pm3Q","7JY2JpB4JU0","7JY2JpB4JU0"],"it":["J7Z291vc1Dc","SN1cT59abG8","J7Z291vc1Dc","SN1cT59abG8","SN1cT59abG8","SN1cT59abG8","SN1cT59abG8"],"bg":["2ja5bSFpAo0","3LeF4iKu_v8","4B5l9vJOHjI"],"cs":["3LeF4iKu_v8","u_0DIqr38yE","cjYXxv0XiAE"],"pl":["ODQubiRWw28","m7W9gGyYmIA","Uqdqj9U1V2I","hg7FTzWSi9E","NUuLma9VQVU","J_YrgP8HEdQ","m7W9gGyYmIA","ODQubiRWw28","J_YrgP8HEdQ","ODQubiRWw28"],"ro":["qRNLnzh2dCU","GSzVs7_aW-Y","Te5YYVZiOKs","WcMHhv0duuo","9gAwJ4bFFjc","l_CHew1mhHI","Rq-1PwTJvNc"],"lt":["jn24G2KFpQQ"],"el":["vOfX5V-dAqA"]}