Анализаторы как органы ощущений. Анализаторы человека: общая схема строения и краткое описание функций

Цели:

  • закрепить и углубить знания об анализаторах,
  • дать представление о свойствах рецепторов анализаторов через практическую работу,
  • познакомить с профессией дегустатора,
  • развивать логическое мышление,
  • навыки публичного выступления,
  • умение анализировать собственные ощущения,
  • умение выделять главное,
  • формулировать выводы.

Оборудование:

  • растворы NaCl в концентрации 0,05%, 0,1%, 0,13%, 0,15%, 0,25%,
  • дистиллированная вода,
  • стаканчики,
  • чайные ложечки,
  • салфетки,
  • раздаточные лотки,
  • пинцет,
  • непрозрачные баночки с крышками, в которых лежат кусочки поролона, смоченные веществами для определения запаха (Приложение 9),
  • монеты,
  • пинцеты,
  • зеркальца,
  • механический будильник.

Девиз урока: “В уме нет ничего, что сначала не прошло через органы чувств”.

Оформление доски: Тема, девиз, таблица: “Анализаторы”, схема классификации, таблица по кожным рецепторам.

Ход урока

I. Орг. момент.

Приветствие. Обсуждение девиза урока: “В уме нет ничего, что сначала не прошло через органы чувств”. Как вы понимаете эти слова?

Предполагаемый ответ: Рецепторы – начальное звено анализатора. Воспринимая сигналы из окружающей среды, они преобразуют их в электрические импульсы, которые передаются в головной мозг. Далее они расшифровываются корой больших полушарий головного мозга, так создаются ощущения.

Давайте вместе сформулируем тему урока (“Свойства рецепторов анализаторов”).

II. Актуализация знаний и проверка д/з.

1. Фронтальный опрос с одновременным заполнением таблицы:

Что такое анализатор? Дайте определение.

Перечислите звенья анализатора, запишите их в верхнюю строку таблицы (шапку).

Назовите известные Вам анализаторы, запишите их в колонку 1.

Давайте проверим заполнение и вместе заполним 2 колонку.

Таблица: “Анализаторы”.

Анализаторы Рецепторный (периферийный) отдел Проводниковый отдел Центральный (корковый) отдел
1 2 3 4
Зрительный Палочки и колбочки на сетчатке глаза Зрительный нерв Зрительная зона коры больших полушарий
Слуховой Чувствительные волоски улитки Слуховой нерв Слуховая зона коры больших полушарий
Обонятельный Рецепторорные клетки слизистого эпителия носа Обонятельный нерв Обонятельная зона коры больших полушарий
Вкусовой Вкусовые почки эпителия ротовой полости Лицевой и языкоглоточный нервы Вкусовая зона коры больших полушарий

III. Новая тема:

1. Классификация рецепторов. Роль ретикулярной формации.

Все перечисленные нами рецепторы воспринимают раздражения из внешней среды. Они называются экстерорецепторы. Предположите, откуда получают сигналы интерорецепторы и проприорецепторы.

Запишите в тетрадь схему классификации рецепторов.

Как вы думаете, зачем столько различных рецепторов?

Предполагаемый ответ: Экстерорецепторы и проприорецепторы служат для ориентации в пространстве, для трудовой деятельности. Интерорецепторы сигнализируют о состоянии внутренней среды, т.е. докладывают о работе почек, желудка, кишечника.

Почему мы не ощущаем ежесекундно сигналов от своих органов? Оказывается, что активность почти всех отделов мозга усиливается или ослабляется ретикулярной формацией. Поэтому, пока у нас ничего не болит, мы и не ощущаем, как функционируют внутренние органы.

Давайте представим себе такую ситуацию: Вы идете по опушке леса и внезапно видите гадюку.

Каковы Ваши действия в этот момент? (Убежать!!!) Правильно, я в 6 лет бежала без остановки до дома.

А какова будет роль ретикулярной формации и анализаторов в данном примере?

Предполагаемый ответ: “Кора больших полушарий получает импульсы от рецепторов зрительного, а, возможно, и слухового анализатора (если змея шипела), импульсы были усилены ретикулярной формацией, одновременно все импульсы от других рецепторов были ослаблены.

2. Свойства рецепторов (практическая часть).

Запишите в тетрадь первое свойство – специфичность. Большинство анализаторов приспособлены для восприятия только одного вида раздражителей, которые называются адекватными. Назовите адекватные раздражители для разных анализаторов? (Для слухового анализатора – звук, звуковые волны, для зрительного – свет, световые волны).

Опыт 1. Выяснить, может ли рецептор воспринимать раздражения, которые не являются для него специфическими.

С этой целью проведем следующий опыт. Закрыть глаза. На одно из глазных яблок со стороны носа слегка надавить рукой. Слабыми движениями потереть веко. Глаза не открывать! При трении многие люди замечают появление черного кольца с желтоватыми каемками. При надавливании кольцо обычно перемещается от периферии к центру. Ответьте на вопросы:

1. Испытывались ли тактильные раздражения? (Тактильные раздражения ощущались четко: чувствовалось давление, смещение глазного яблока.)

2. Соответствовали ли кожные механические раздражения кожным анализаторам? (Соответствовали и потому давали точную информацию о давлении на глаз и перемещении глазного яблока.)

3. Почему при механическом раздражении некоторые из испытуемых видели желтое кольцо? (Механические раздражения сетчатки глаза вызвали зрительное ощущение.)

4. Может ли рецептор возбуждаться от раздражений, которые не являются для него специфическими? (Может, но при этом ощущение становится иллюзорным, никакого кольца на самом деле не было.)

5. Знали ли испытуемые, что восприятие кольца было кажущимся? (Знали, потому что кольцо не воспринималось в определенной точке пространства, а как бы находилось внутри глаза. Кроме того, его появление и перемещение зависело от силы давления на глаз).

При объяснении этого опыта можно остановиться на следующих моментах. Во-первых, учащиеся должны понять, что информативное значение имеют только раздражители, адекватные данному анализатору. Механические, электрические и другие раздражители, не адекватные зрительному анализатору, могут в некоторых случаях вызвать возбуждение рецепторов сетчатки, нервов зрительной зоны коры и спровоцировать появление кажущихся образов, но они не несут полезной информации. Во-вторых, процессы анализа и синтеза возбуждений, происходящие в коре больших полушарий, позволяют правильно оценивать значение получаемых сведений и вносить необходимые поправки. В-третьих, благодаря тому что ” нервной системе синтезируется информация, получаемая от различных анализаторов, человек оказывается способным правильно оценивать поступающую информацию, не путать иллюзорные образы с реальными.

Сделайте вывод, может ли рецептор воспринимать раздражения, которые не являются для него специфическими.

Формулируемый вывод: в некоторых случаях неадекватные раздражители могут вызвать возбуждение, но они не несут полезной информации.

Второе свойство – адаптация, запишите.

Опыт 2. Положите монету на ладонь. Засеките время, сколько секунд спустя Вы перестали чувствовать монету. Почему?

Предполагаемый ответ: “Привыкаем”. В рецепторе ослабевает возбуждение.

Это свойство называется адаптацией. Адаптация – явление ослабления возбуждения в рецепторе при длительном действии раздражителя постоянной силы. Происходит снижение чувствительности, т.к. возрастает порог чувствительности. Свойство адаптации очень важно потому, что уменьшается поток импульсов, идущих в мозг.

Приведите примеры, в которых можно пронаблюдать адаптацию анализаторов. (Мы не чувствуем одежду на теле, заколки, часы, кольца, браслеты, не слышим ночью тиканье часов и гул машин).

Третье свойство – чувствительность. Минимальная сила раздражителя, способная вызвать возбуждение рецептора, называется абсолютным порогом чувствительности.

У разных людей чувствительность различна. Есть люди, обладающие очень высокой чувствительностью. Это люди тестеры, дегустаторы, сообщение о которых мы сейчас послушаем.

Сообщения учащихся о дегустаторах. (Приложение 1,2,3).

Теперь мы проведем серию опытов на выявление Вашей чувствительности.

Опыт 3. Для опыта нам понадобятся наручные механические часы среднего размера и линейка. Вы будете работать в парах. Медленно приближайте часы к уху. Подайте условный знак партнеру, когда услышите тиканье. Замерьте расстояние от часов до уха. Давайте создадим абсолютную тишину.

Высокая острота слуха – при расстоянии 15 см и больше. Громкость звука измеряют не в сантиметрах, конечно, а в децибелах, так часто полученная нами величина – условная единица. Но, зная громкость, с какою тикают часы и расстояние, на которое часы удалены от уха, можно высчитать слуховую чувствительность, определив слуховой порог в децибелах.

Сделайте вывод о чувствительности своего слуха.

Опыт 4. Работайте в парах. Взять два тонко отточенных карандаша. Выбирается участок кожи, например на руке, который исследуется. Один ученик дотрагивается одновременно карандашами до разных участков кожи руки другого ученика (у второго глаза закрыты). Если два одновременных укола ощущаются как один, считается, что на этом участке кожи "работает" один чувствительный рецептор. Как только два одновременных дотрагивания начнут ощущаться как два, измеряют расстояние линейкой. Предполагается, что это и есть минимальное расстояние между разными чувствительными рецепторами.

Сделайте вывод, от чего зависит чувствительность кожных анализаторов. (От количества рецепторов на 1 см 2). Рассмотрите таблицу “Число и распределение тепловых и холодовых рецепторов на коже” в приложении 7 .

Опыт 5. На каждой парте стоит лоток с солевыми растворами разной концентрации, вода, баночка для сплевывания, чайная ложечка. Ни вода, ни растворы не проглатываются. После определения концентрации каждого раствора, рот прополаскивается водой.

Растворы NaCl в концентрации:

0,05% - отличная чувствительность

0,1% - хорошая чувствительность

0,13% - удовлетворительная чувствительность

0,15% - плохая чувствительность

0,25% - агнозия (полное или частичное отсутствие вкусовой чувствительности).

Опыт 6. У Вас на столах стоят баночки, закрытые крышками. Откройте их, попытайтесь определить какие вещества в них находятся. Если вы распознали 4-5 запахов из 6, то вы можете стать дегустатором запахов. Сделайте вывод. Как вы думаете, все ли могут стать дегустаторами?

Послушайте сообщение учащегося. (Приложение 4) . Сделайте вывод. (Не все люди могут стать дегустаторами, т.к. это заложено генотипом. Но, если способности есть, то их можно развить.)

3. Практическое использование знаний о чувствительности анализаторов. Беседа.

Учащиеся со сниженной остротой зрения или слуха должны сидеть на 1-2 парте.

Определение качества пищевых продуктов – по запаху, вкусу.

Использование парфюмерных средств, гармоничное сочетание их запахов.

Использование при выборе профессии художника, музыканта, дегустатора и др.

Сообщение учащегося о шумовом загрязнении. (Приложение 5).

Сообщение учащегося “Аромауправление”. (Приложение 6).

IV. Закрепление изученного материала.

1. Почему в прокуренной комнате через некоторое время люди перестают ощущать неприятный запах дыма? (Уменьшается порог чувствительности).

2. Глухой Бетховен слушал музыку тростью, прислонив один конец к деке рояля, а другой конец трости брал в зубы. Проведем подобный опыт.

Опыт 7. Закроем плотно уши испытуемому и приложим к темени часы. Слышите ли Вы звук? Почему? (Звук распространяется не только в газовых средах, но и в твердых телах. Тикающие часы вызвали колебания в костях черепа, которые привели к импульсам в слуховом анализаторе).

3. Опыт 8. Положите ватку с растительным маслом в рот. Ощущаете ли Вы запах? Как, если Вы не делали вдох носом? (Через хоаны).

4. Предположите объяснение феномену Розы Кулешовой, которая, будучи слепой, руками распознавала цвет, рисунки и даже шрифт. (Учитывая свойство специфичности, Роза не могла видеть руками. Следовательно, она получала только тактильные ощущения, которые были связаны со зрительными впечатлениями.) Да, действительно, Роза знала, что красный цвет вызывает покалывания, коричневый цвет она воспринимала как вязкий, а синий – как гладкий, холодный и скользкий. Недостаток зрения она компенсировала усилением другого анализатора. На этом основано обучение слепоглухонемых по методике Мещерякова А.Я. и Соколянского И.А.. Для обучения они использовали вибрационное чувство. Чтобы понять, что это такое, положите руку дома на корпус звучащего приемника и почувствуйте колебания стенок. Подобным образом велось обучение слепоглухонемых: ученик прикасался к горлу или затылку преподавателя и ощущал вибрацию при произнесении им звуков, слогов, слов и фраз. Затем ученик помещал руку на свое горло и воспроизводил звуки, вызывающие те же вибрации, что ощущались им у преподавателя. Эти вибрационные ощущения связывались с соответствующими звуками языка, которые передавались с помощью тактильной азбуки. Некоторые из слепоглухонемых, обучавшихся по этой методике, достигли высоких результатов. Ольга Скороходова овладела речью, получила образование, защитила докторскую кандидатскую в области дефектологии. Таким образом, она заговорила. Но не стала слышать. Сформулируйте вывод о компенсаторных возможностях. Предполагаемый вывод: благодаря взаимозаменяемости анализаторов ослабление одного из них ведет к усилению других. Так же благодаря компенсаторным возможностям такие люди становятся полноправными членами нашего общества.

5. Опыт 9. Дотроньтесь двумя перекрещивающимися пальцами до носа. Их два? Почему? А теперь одновременно посмотрите в зеркало. Сколько носов? Один? Объясните. Предполагаемый ответ: Ощущения в организме складываются в результате работы всех анализаторов и оцениваются организмом комплексно. В данном примере тактильные ощущения дополнились зрительными ощущениями, и произошла корректировка ощущений. Таким образом, результатом взаимодействия анализаторов стало соответствие ощущения реальности.

Итоги урока – рефлексия.

И в заключение хочу порекомендовать прочесть книгу Мариуса Плужникова, Сергея Рязанцева “Среди запахов и звуков” © НиТ . Раритетные издания , 1998. В книге рассказывается о физиологии слуха, обоняния и вкуса, а также о заболеваниях уха, горла и носа. Иными словами – обо всех познавательных, занимательных, а иногда и курьезных аспектах оториноларингологии. Электронную версию книги можно найти на сайте www.n-t.ru/ri/

Д/з (по желанию): составить характеристику рецепторов (любую) по виду воспринимаемых раздражений, характеру связи с раздражителем, структурным особенностям. (Ответ в приложении 8)

Литература:

  1. Анисимова В.С., Бруновт Е.П., Реброва Л.В. Самостоятельные работы учащихся по анатомии, физиологии и гигиене человека: пособие для учителя./ М- Просвещение. – 1987.
  2. Воронин Л.Г., Маш Р.Д. Методика проведения опытов и наблюдений по анатомии, физиологии и гигиене человека: книга для учителя./ М.- Просвещение. – 1983.
  3. Демьянков Е.Н. Биология в вопросах и ответах: Книга для учителя./М. – Просвещение: АО “Учебная литература” - 1996.
  4. Семенцова В.Н. Биология. Технологические карты уроков. 8 класс. Методическое пособие./ Санкт – Петербург. – Паритет. – 2002.
  5. Я иду на урок биологии: Человек и его здоровье: Книга для учителя./ М. – первое сентября.- 2000.

Анализатор – совокупность трех отделов нервной системы: периферического, проводникового и центрального.

Периферический отдел анализатора представлен рецепторами, воспринимающими внешние и внутренние раздражения.

Все рецепторы делятся на две группы: дистантные и контактные. Дистантные рецепторы способны воспринимать раздражения, источник которых находится на значительном расстоянии от организма (зрительные, слуховые, обонятельные рецепторы). Контактные рецепторы возбуждаются при непосредственном соприкосновении с источником раздражения. К ним относятся тактильные, температурные, вкусовые рецепторы.

Рецепторы трансформируют энергию раздражения в энергию нервного импульса. Причиной возникновения возбуждения в рецепторе является деполяризация его поверхностной мембраны в результате воздействия раздражителя. Эту деполяризацию называют рецепторным, или регенераторным, потенциалом.

Адаптация - приспособление к силе раздражителя. Происходит снижение чувствительности рецепторов к постоянно действующему раздражителю. Проприорецепторы не способны к адаптации.

Проводниковый отдел анализатора представлен нервными путями, проводящими нервные импульсы в центральный отдел анализатора.

Центральный, или мозговой, отдел анализатора - определенные области коры большого мозга. В клетках коры большого мозга нервные импульсы являются основой для возникновения ощущения. На базе ощущений возникают более сложные психические акты - восприятие, представление и абстрактное мышление.

Павлов И.П. Мозговой конец анализатора состоит из двух частей: ядра и периферических рассеянных нервных элементов, располагающихся по всей поверхности коры головного мозга.

Центральная часть анализатора (ядро) состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Рассеянные элементы мозгового конца анализатора представлены менее дифференцированными нейронами, способными к выполнению простейших функций.

Все анализаторы делятся на внешние и внутренние. К внешним анализаторам относят зрительный, слуховой, вкусовой, обонятельный и кожный. К внутренним анализаторам - двигательный, вестибулярный и анализатор внутренних органов (интерорецептивный анализатор).

ВНЕШНИЕ АНАЛИЗАТОРЫ.

Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область - мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения.

Глаз состоит из глазного яблока и вспомогательного аппарата. Стенку глазного яблока образуют три оболочки: роговица, склера, или белочная, и сосудистая. Внутренняя (сосудистая) оболочка состоит из сетчатки, на которой расположены фоторецепторы (палочки и колбочки), и ее кровеносных сосудов.

В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку. Приспособление глаза к ясному видению разноудаленных предметов называют аккомодацией . Аккомодация осуществляется путем изменения кривизны хрусталика. Рефракция – преломление света в оптических средах глаза.

Существуют две главные аномалии преломления лучей в глазу: дальнозоркость и близорукость.

Поле зрения - угловое пространство, видимое глазом при фиксированном взгляде и неподвижной голове.

На сетчатке расположены фоторецепторы: палочки (с пигментом родопсин) и колбочки (с пигментом йодопсин). Колбочки обеспечивают дневное зрение и восприятие цвета, палочки – сумеречное, ночное зрение.

Человек обладает способностью различать большое количество цветов. Механизм цветовосприятия по общепринятой, но уже устаревшей трехкомпонентной теории заключается в том, что в зрительной системе имеются три датчика, чувствительных к трем основным цветам: красному, желтому и синему. Поэтому нормальное цветовосприятие называется трихромазией. При определенном смешении трех основных цветов возникает ощущение белого цвета. При нарушении работы одного или двух датчиков основных цветов правильного смешения цветов не наблюдается и возникают нарушения цветовосприятия.

Различают врожденную и приобретенную формы цветоаномалии. При врожденной цветоаномалии чаще наблюдается снижение чувствительности к синему цвету, а при приобретенной - к зеленому. Цветоаномалия Дальтона (дальтонизм) заключается в снижении чувствительности к оттенкам красного и зеленого цветов. Этим заболеванием страдают около 10 % мужчин и 0,5 % женщин.

Процесс восприятия цвета не ограничивается реакцией сетчатки, а существенно зависит от обработки полученных сигналов мозгом .

Слуховой анализатор.

Значение слухового анализатора состоит в восприятии и анализе звуковых волн. Периферический отдел слухового анализатора представлен спиральным (кортиевым) органом внутреннего уха. Слуховые рецепторы спирального органа воспринимают физическую энергию звуковых колебаний, которые поступают к ним от звукоулавливающего (наружное ухо) и звукопередающего аппарата (среднее ухо). Нервные импульсы, образующиеся в рецепторах спирального органа, через проводниковый путь (слуховой нерв) идут в височную область коры большого мозга - мозговой отдел анализатора. В мозговом отделе анализатора нервные импульсы преобразуются в слуховые ощущения.

Орган слуха включает наружное, среднее и внутреннее ухо.

Строение наружного уха. В состав наружного уха входят ушная раковина, наружный слуховой проход.

Наружное ухо от среднего отделяется барабанной перепонкой. С внутренней стороны барабанная перепонка соединена с рукояткой молоточка. Барабанная перепонка колеблется при всяком звуке соответственно длине его волны.

Строение среднего уха. В состав среднего уха входит система слуховых косточек - молоточек, наковальня, стремечко, слуховая (евстахиева) труба. Одна из косточек - молоточек - вплетена своей рукояткой в барабанную переронку, другая сторона молоточка сочленена с наковальней. Наковальня соединена со стремечком, которое прилегает к мембране окна преддверия (овального окна) внутренней стенки среднего уха.

Слуховые косточки участвуют в передаче колебаний барабанной перепонки, вызванных звуковыми волнами, окну преддверия, а затем эндолимфе улитки внутреннего уха.

Окно преддверия расположено на стенке, отделяющей среднее ухо от внутреннего. Там же имеется круглое окно. Колебания эндолимфы улитки, начавшиеся у овального окна, распостраняются по ходам улитки, не затухая, до круглого окна.

Строение внутреннего уха. В состав внутреннего уха (лабиринта) входят преддверие, полукружные каналы и улитка, в которой расположены особые рецепторы, реагирующие на звуковые волны. Преддверие и полукружные каналы к органу слуха не относятся. Они представляют собой вестибулярный аппарат , который участвует в регуляции положения тела в пространстве и сохранении равновесия.

На основной мембране среднего хода улитки имеется звуковоспринимающий аппарат - спиральный орган. В его состав входят рецепторные волосковые клетки, колебания которых преобразуются в нервные импульсы, распространяющиеся по волокнам слухового нерва и поступают в височную долю коры большого мозга. Нейроны височной доли коры большого мозга приходят в состояние возбуждения, и возникает ощущение звука. Так осуществляется воздушная проводимость звука.

При воздушной проводимости звука человек способен воспринимать звуки в очень широком диапазоне - от 16 до 20 000 колебаний в 1 с.

Костная проводимость звука осуществляется через кости черепа. Звуковые колебания хорошо проводятся костями черепа, передаются сразу на перилимфу верхнего и нижнего ходов улитки внутреннего уха, а затем - на эндолимфу среднего хода. Происходит колебание основной мембраны с волосковыми клетками, в результате чего они возбуждаются, и возникшие нервные импульсы в дальнейшем передаются к нейронам головного мозга.

Воздушная проводимость звука выражена лучше, чем костная.

Вкусовой и обонятельный анализаторы.

Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта.

Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути, главным образом блуждающему, лицевому и языкоглоточному нервам, поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора.

Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике.

Раздражение одних сосочков вызывает ощущение только сладкого вкуса, других - только горького и т. д. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.

Обонятельный анализатор принимает участие в определении запахов, связанных с появлением в окружающей среде пахучих веществ.

Периферический отдел анализатора образуется обонятельными рецепторами, которые находятся в слизистой оболочке полости носа. От обонятельных рецепторов нервные импульсы по проводниковому отделу - обонятельному нерву - поступают в мозговой отдел анализатора - область крючка и гиппокампа лимбической системы. В корковом отделе анализатора возникают различные обонятельные ощущения.

Рецепторы обоняния сосредоточены в области верхних носовых ходов. На поверхности обонятельных клеток имеются реснички. Это увеличивает возможность их контакта с молекулами пахучих веществ. Рецепторы обоняния очень чувствительны. Так, для получения ощущения запаха достаточно, чтобы было возбуждено 40 рецепторных клеток, причем на каждую из них должна действовать всего одна молекула пахучего вещества.

Ощущение запаха при одной и той же концентрации пахучего вещества в воздухе возникает лишь в первый момент его действия на обонятельные клетки. В дальнейшем ощущение запаха ослабевает. Количество слизи в полости носа также влияет на возбудимость обонятельных рецепторов. При повышенном выделении слизи, например во время насморка, происходит снижение чувствительности рецепторов обоняния к пахучим веществам.

Тактильный и температурный анализаторы.

Деятельность тактильного анализатора связана с различением различных воздействий, оказываемых на кожу - прикосновение, давление.

Тактильные рецепторы , находящиеся на поверхности кожи и слизистых оболочках полости рта и носа, образуют периферический отдел анализатора. Они возбуждаются при прикосновении к ним или давлении на них. Проводниковый отдел тактильного анализатора представлен чувствительными нервными волокнами, идущими от рецепторов в спинной (через задние корешки и задние столбы), продолговатый мозг, зрительные бугры и нейроны ретикулярной формации. Мозговой отдел анализатора - задняя центральная извилина. В нем возникают тактильные ощущения.

К тактильным рецепторам относят осязательные тельца (мейсснеровы), расположенные в сосудах кожи, и осязательные мениски (меркелевы диски), имеющиеся в большом количестве на кончиках пальцев и губ. К рецепторам давления относят пластинчатые тельца (Пачини), которые сосредоточены в глубоких слоях кожи, в сухожилиях, связках, брюшине, брыжейке кишечника.

Температурный анализатор. Его значение состоит в определении температуры внешней и внутренней среды организма.

Периферический отдел этого анализатора образован терморецепторами. Изменение температуры внутренней среды организма приводит к возбуждению температурных рецепторов, расположенных в гипоталамусе. Проводниковый отдел анализатора представлен спиноталамическим путем, волокна которого заканчиваются в ядрах зрительных бугров и нейронах ретикулярной формации ствола мозга. Мозговой конец анализатора - задняя центральная извилина КГМ, где формируются температурные ощущения.

Тепловые рецепторы представлены тельцами Руффини, холодовые - колбами Краузе.

Терморецепторы в коже располагаются на разной глубине: более поверхностно находятся холодовые, глубже - тепловые рецепторы.

ВНУТРЕННИЕ АНАЛИЗАТОРЫ.

Вестибулярный анализатор. Участвует в регуляции положения и движения тела в пространстве, в поддержании равновесия, а также имеет отношение к регуляции мышечного тонуса.

Периферический отдел анализатора представлен рецепторами, расположенными в вестибулярном аппарате. Они возбуждаются при изменении скорости вращательного движения, прямолинейном ускорении, изменении направления силы тяжести, вибрации. Проводниковый путь - вестибулярный нерв. Мозговой отдел анализатора расположен в передних отделах височной доли КГМ. В результате возбуждения нейронов этого отдела коры возникают ощущения, дающие представления о положении тела и отдельных его частей в пространстве, способствующие сохранению равновесия и поддержанию определенной позы тела в покое и при движении.

Вестибулярный аппарат состоит из преддверия и трех полукружных каналов внутреннего уха. Полукружные каналы - это узкие ходы правильной формы, которые располагаются в трех взаимно перпендикулярных плоскостях. Верхний, или передний, канал лежит во фронтальной, задний - в сагиттальной, а наружные - в горизонтальной плоскости. Один конец каждого канала колбообразно расширен и называется ампулой

Возбуждение рецепторных клеток происходит за счет перемещения эндолимфы каналов.

Повышение активности вестибулярного анализатора возникает под влиянием изменения скорости движения тела.

Двигательный анализатор. За счет активности двигательного анализатора определяется положение тела или его отдельных частей в пространстве, степень сокращения каждой мышцы.

Периферический отдел двигательного анализатора представлен проприорецепторами, находящимися в мышцах, сухожилиях, связках и околосуставных сумках. Проводниковый отдел состоит из соответствующих чувствительных нервов и проводящих путей спинного и головного мозга. Мозговой отдел анализатора располагается в двигательной области коры головного мозга - передней центральной извилине лобной доли.

Проприорецепторами являются: мышечные веретена, находящиеся среди мышечных волокон, луковицеобразные тельца (Гольджи), расположенные в сухожилиях, пластинчатые тельца, обнаруженные в фасциях, покрывающих мышцы, в сухожилиях, связках и надкостнице. Изменение активности различных проприорецепторов происходит в момент сокращения или расслабления мышц. Мышечные веретена всегда находятся в состоянии некоторого возбуждения. Поэтому от мышечных веретен постоянно поступают нервные импульсы в центральную нервную систему, в спинной мозг. Это приводит к тому, что двигательные нервные клетки - мотонейроны спинного мозга находятся в состоянии тонуса и непрерывно посылают редкие нервные импульсы по эфферентным путям к мышечным волокнам, обеспечивая их умеренное сокращение - тонус.

Интероцептивный анализатор. Этот анализатор внутренних органов участвует в поддержании постоянства внутренней среды организма (гомеостаза).

Периферический отдел образован разнообразными интерорецепторами, диффузно расположенными во внутренних органах. Они называются висцерорецепторами .

Проводниковый отдел включает несколько различных по функциональному значению нервов, которые иннервируют внутренние органы, блуждающие, чревные и внутренностные тазовые. Мозговой отдел располагается в моторной и премоторной области КГМ. В отличие от внешних анализаторов мозговой отдел интероцептивного анализатора имеет значительно меньше афферентных нейронов, воспринимающих нервные импульсы от рецепторов. Поэтому здоровый человек не ощущает работу внутренних органов. Это связано с тем, что афферентные импульсы, поступающие от интерорецепторов в мозговой отдел анализатора, не преобразуются в ощущения, то есть не доходят до порога нашего сознания. Однако при возбуждении некоторых висцерорецепторов, например рецепторов мочевого пузыря и прямой кишки в случае растяжения их стенок, возникают ощущения позыва на мочеиспускание и дефекацию.

Висцерорецепторы участвуют в регуляции работы внутренних органов, осуществляют рефлекторные взаимодействия между ними.

Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами , расположенными по всему телу, за исключением головного мозга. Термин ноцицепция означает процесс восприятия повреждения.

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли . Комплекс ноцицептивной системы в равной степени сбалансирован в организме комплексом антиноцицептивной системы , обеспечивающей контроль за активностью структур, участвующих в восприятии, проведении и анализе болевых сигналов. Антиноцицептивная система обеспечивает снижение болевых ощущений внутри организма. В настоящее время установлено, что болевые сигналы, поступающие с периферии, стимулируют активность различных отделов центральной нервной системы (околопроводное серое вещество, ядра шва ствола мозга, ядра ретикулярной формации, ядра таламуса, внутренней капсулы, мозжечка, интернейроны задних рогов спинного мозга и др.) оказывающих нисходящее тормозное действие на передачу ноцицептивной афферентации в дорзальных рогах спинного мозга.

В механизмах развития анальгезии наибольшее значение придаётся серотонинергической, норадренергической, ГАМКергической и опиоидергической системам мозга. Основная из них, опиоидергическая система , образована нейронами, тело и отростки которых содержат опиоидные пептиды (бета-эндорфин, мет-энкефалин, лей-энкефалин, динорфин). Связываясь с определёнными группами специфических опиоидных рецепторов, 90% которых расположено в дорзальных рогах спинного мозга, они способствуют высвобождению различных химических веществ (гамма-аминомасляная кислота), тормозящих передачу болевых импульсов. Эта природная, естественная болеутоляющая система так же важна для нормальной жизнедеятельности, как и болесигнализирующая система. Благодаря ей, незначительные повреждения типа ушиба пальца или растяжения связок вызывают сильные болевые ощущения только на короткое время - от несколько минут до нескольких часов, не заставляя нас страдать в течение дней и недель, что случилось бы в условиях сохранения боли до полного заживления.


Анализатор - это система, обеспечивающая восприятие, доставку в мозг и анализ в нем какого-либо вида информации (зрительной, слуховой, обонятельной и т. д.). Каждый анализатор органов чувств состоит из периферического отдела (рецепторов), проводникового отдела (нервных путей) и центрального отдела (центров, анализирующих данный вид информации).

Более 90% информации об окружающем мире человек получает с помощью зрения.

Орган зрения глаз состоит из глазного яблока и вспомогательного аппарата. К последнему относят веки, ресницы, мышцы глазного яблока и слёзные железы. Веки - складки кожи, выстланные изнутри слизистой оболочкой. Слезы, образующиеся в слёзных железах, омывают передний отдел глазного яблока и через носослёзный канал проходят в ротовую полость. У взрослого человека в сутки должно вырабатываться не менее 3-5 мл слез, выполняющих бактерицидную и увлажняющую роль.

Глазное яблоко имеет шарообразную форму и располагается в глазнице. При помощи гладких мышц оно может поворачиваться в глазнице. Глазное яблоко имеет три оболочки. Наружная - фиброзная, или белочная - оболочка спереди глазного яблока переходит в прозрачную роговицу, а ее задний отдел называется склерой. Через среднюю оболочку - сосудистую - глазное яблоко снабжается кровью. Впереди в сосудистой оболочке имеется отверстие - зрачок, позволяющий лучам света попадать внутрь глазного яблока. Вокруг зрачка часть сосудистой оболочки окрашена и называется радужкой. Клетки радужки содержат всего один пигмент, и если его мало, радужка окрашена в голубой или серый цвет, а если много - в карий или черный. Мышцы зрачка расширяют или сужают его в зависимости от яркости света, освещающего глаз, приблизительно от 2 до 8 мм в диаметре. Между роговицей и радужкой расположена передняя камера глаза, заполненная жидкостью.

Позади радужки расположен прозрачный хрусталик - двояковыпуклая линза, необходимая для фокусировки лучей света на внутреннюю поверхность глазного яблока. Хрусталик снабжен специальными мышцами, меняющими его кривизну. Этот процесс называется аккомодацией. Между радужкой и хрусталиком расположена задняя камера глаза.

Большая часть глазного яблока заполнена прозрачным стекловидным телом. Пройдя через хрусталик и стекловидное тело, лучи света попадают на внутреннюю оболочку глазного яблока - сетчатку. Это многослойное образование, причем три его слоя, обращенные внутрь глазного яблока, содержат зрительные рецепторы - колбочки (около 7 млн.) и палочки (около 130 млн.). В палочках содержится зрительный пигмент родопсин, они более чувствительны, чем колбочки, и обеспечивают черно-белое зрение при плохом освещении. Колбочки содержат зрительный пигмент иодопсин и обеспечивают цветное зрение в условиях хорошей освещенности. Считается, что есть три вида колбочек, воспринимающих красный, зеленый и фиолетовый цвета соответственно. Все остальные оттенки определяются комбинацией возбуждений в этих трех типах рецепторов. Под действием квантов света зрительные пигменты разрушаются, генерируя электрические сигналы, которые передаются от палочек и колбочек к ганглиозному слою сетчатки. Отростки клеток этого слоя образуют зрительный нерв, выходящий из глазного яблока через слепое пятно - место, где нет зрительных рецепторов.

Больше всего колбочек располагается прямо напротив зрачка - в так называемом желтом пятне, а в периферических отделах сетчатки колбочек почти нет, там располагаются одни палочки.

Выйдя из глазного яблока, зрительный нерв следует в верхние бугры четверохолмия среднего мозга, где зрительная информация подвергается первичной обработке. По аксонам нейронов верхних бугров зрительная информация попадает в латеральные коленчатые тела таламуса, а уж оттуда - в затылочные доли коры больших полушарий. Именно там формируется тот зрительный образ, который мы субъективно ощущаем.

Следует отметить, что оптическая система глаза формирует на сетчатке не только уменьшенное, но и перевернутое изображение предмета. Обработка сигналов в центральной нервной системе происходит таким образом, что предметы воспринимаются в естественном положении.

Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. В идеальных условиях (чистота воздуха, безветрие) огонь зажженной на горе спички может быть различим на расстоянии 80 км. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 сек для распознавания объекта, который попал в поле зрения.

Слуховой анализатор

Слух необходим для восприятия звуковых колебаний в довольно широком диапазоне частот. В юношеском возрасте человек различает звуки в диапазоне от 16 до 20 000 герц, однако уже к 35 годам верхняя граница слышимых частот падает до 15 000 герц. Помимо создания объективной целостной картины об окружающем мире слух обеспечивает речевое общение людей.

Слуховой анализатор включает в себя орган слуха, слуховой нерв и центры мозга, анализирующие слуховую информацию. Периферическая часть органа слуха, то есть орган слуха, состоит из наружного, среднего и внутреннего уха.

Наружное ухо человека представлено ушной раковиной, наружным слуховым проходом и барабанной перепонкой.

Ушная раковина - хрящевое образование, покрытое кожей. У человека, в отличие от многих животных, ушные раковины практически неподвижны. Наружный слуховой проход - канал длиной 3-3,5 см, заканчивающийся барабанной перепонкой, отделяющей наружное ухо от полости среднего уха. В последней, имеющей объем около 1 см3, расположены самые маленькие кости организма человека: молоточек, наковальня и стремечко. Молоточек «рукояткой» срастается с барабанной перепонкой, а «головкой» подвижно присоединен к наковальне, которая другой своей частью подвижно соединена со стремечком. Стремечко, в свою очередь, широким основанием сращено с перепонкой овального окна, ведущего во внутреннее ухо. Полость среднего уха через евстахиеву трубу соединена с носоглоткой. Это необходимо для выравнивания давления по обе стороны барабанной перепонки при изменениях атмосферного давления.

Внутреннее ухо находится в полости пирамиды височной кости. К органу слуха во внутреннем ухе относится улитка - костный, спирально закрученный канал в 2,75 оборота. Снаружи улитка омывается перилимфой, заполняющей полость внутреннего уха. В канале улитки расположен перепончатый костный лабиринт, заполненный эндолимфой; в этом лабиринте находится звуковоспринимающий аппарат - спиральный орган, состоящий из основной мембраны с рецепторными клетками и покровной мембраны. Основная мембрана - тонкая перепончатая перегородка, разделяющая полость улитки и состоящая из многочисленных волокон различной длины. В этой мембране расположено около 25 тыс. рецепторных волосковых клеток. Один конец каждой рецепторной клетки фиксирован на волокне основной мембраны. Именно от этого конца отходит волокно слухового нерва. При поступлении звукового сигнала столбик воздуха, заполняющий наружный слуховой проход, колеблется. Эти колебания улавливаются барабанной перепонкой и через молоточек, наковальню и стремечко передаются на овальное окошко. При прохождении через систему звуковых косточек звуковые колебания усиливаются приблизительно в 40-50 раз и передаются на перилимфу и эндолимфу внутреннего уха. Через эти жидкости колебания воспринимаются волокнами основной мембраны, причем высокие звуки вызывают колебания более коротких волокон, а низкие - более длинных. В результате колебаний волокон основной мембраны возбуждаются рецепторные волосковые клетки, и сигнал по волокнам слухового нерва передается сначала в ядра нижних бугров четверохолмия, оттуда в медиальные коленчатые тела таламуса и, наконец, в височные доли коры больших полушарий, где и находится высший центр слуховой чувствительности.

Вестибулярный анализатор выполняет функцию регуляции положения тела и его отдельных частей в пространстве.

Периферическая часть этого анализатора представлена рецепторами, расположенными во внутреннем ухе, а также большим количеством рецепторов, расположенных в сухожилиях мышц.

В преддверии внутреннего уха расположены два мешочка - круглый и овальный, которые заполнены эндолимфой. В стенках мешочков находится большое число рецепторных волосковидных клеток. В полости мешочков расположены отолиты - кристаллы солей кальция.

Кроме того, в полости внутреннего уха присутствуют три полукружных канала, расположенных во взаимно перпендикулярных плоскостях. Они заполнены эндолимфой, в стенках их расширений находятся рецепторы.

При изменении положения головы или всего тела в пространстве отолиты и эндолимфа полукружных канальцев перемещаются, возбуждая волосковидные клетки. Их отростки образуют вестибулярный нерв, по которому информация об изменении положения тела в пространстве попадает в ядра среднего мозга, мозжечок, ядра таламуса и, наконец, в теменную область коры больших полушарий.

Тактильный анализатор

Осязание - это комплекс ощущений, возникающий при раздражении нескольких видов рецепторов кожи. Рецепторы прикосновения (тактильные) бывают нескольких видов: одни из них очень чувствительны и возбуждаются при вдавлении кожи на руке всего на 0, 1 мкм, другие возбуждаются лишь при значительном давлении. В среднем на 1 см2 приходится около 25 тактильных рецепторов, однако на коже лица, пальцев, на языке их гораздо больше. Кроме того, к прикосновениям чувствительны волоски, покрывающие 95% нашего тела. У основания каждого волоска находится тактильный рецептор. Информация от всех этих рецепторов собирается в спинной мозг и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда в высший центр тактильной чувствительности - область задней центральной извилины коры больших полушарий.

Вкусовой анализатор

Периферический отдел вкусового анализатора - вкусовые рецепторы, расположенные в эпителии языка и, в меньшей степени, слизистой ротовой полости и глотки. Вкусовые рецепторы реагируют только на растворенные в воде вещества, а нерастворимые вещества вкуса не имеют. Человек различает четыре вида вкусовых ощущений: соленое, кислое, горькое, сладкое. Больше всего рецепторов, восприимчивых к кислому и соленому, расположено по бокам языка, к сладкому - на кончике языка, а к горькому - на корне языка, хотя небольшое число рецепторов любого из этих раздражителей разбросано по слизистой всей поверхности языка. Оптимальная величина вкусовых ощущений наблюдается при температуре в полости рта 29°С.

От рецепторов информация о вкусовых раздражителях по волокнам языкоглоточного и частично лицевого и блуждающего нерва поступает в средний мозг, ядра таламуса и, наконец, на внутреннюю поверхность височных долей коры больших полушарий, где расположены высшие центры вкусового анализатора.

Обонятельный анализатор

Обоняние обеспечивает восприятие различных запахов. Обонятельные рецепторы расположены в слизистой оболочке верхней части носовой полости. Общая площадь, занимаемая обонятельными рецепторами, составляет у человека 3-5 см2. Для сравнения: у собаки эта площадь составляет около 65 см2, а у акулы - 130 см2. Чувствительность обонятельных пузырьков, которыми заканчиваются рецепторные обонятельные клетки у человека, тоже не очень велика: для возбуждения одного рецептора необходимо, чтобы на него подействовало 8 молекул пахучего вещества, а ощущение запаха возникает в нашем мозге только при возбуждении приблизительно 40 рецепторов. Таким образом, человек субъективно начинает ощущать запах только в том случае, когда в нос попадает более 300 молекул пахучего вещества. Информация от обонятельных рецепторов по волокнам обонятельного нерва поступает в обонятельную зону коры больших полушарий, расположенную на внутренней поверхности височных долей.

Анализаторы человека (зрение, слух, обаняние, вкус, осязание)

Анализатор (analyser) — термин, введенный И.П.Павловым для обозначения функциональной единицы, ответственной за прием и анализ сенсорной информации какой-либо одной модальности.

Совокупность нейронов разных уровней иерархии, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.

Анализатор, вместе с совокупностью специализированных структур (органов чувств), содействующих восприятию информации среды, называют сенсорной системой.

Например, слуховая система представляет собой совокупность очень сложных взаимодействующих структур, включающую в себя наружное, среднее, внутреннее ухо и совокупность нейронов, называемых анализатором.

Часто понятия "анализатор" и "сенсорная система" используют как синонимы.

Анализаторы, как и сенсорные системы, классифицируют по качеству (модальности) тех ощущений, в формировании которых они участвуют. Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, вестибулярный, двигательные анализаторы, анализаторы внутренних органов, соматосенсорный анализаторы.

В анализаторе выделяют три отдела :

1. Воспринимающий орган или рецептор, предназначенный для преобразование энергии раздражения в процесс нервного возбуждения;

2. Проводник, состоящий из афферентных нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;

3. Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий.

Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов

Анализаторы являются специальными структурами организма, служащими для ввода внешней информации в мозг для последующей ее переработки.

Второстепенные термины

  • рецепторы;

Структурная схема терминов

В процессе трудовой деятельности организм человека приспосабливается к изменениям окружающей среды благодаря регулирующей функции центральной нервной системы (ЦНС). Человек связан со средой с помощью анализаторов , которые состоят из рецепторов, проводящих нервных путей и мозгового конца в коре головного мозга. Мозговой конец состоит из ядра и рассеянных по коре головного мозга элементов, обеспечивающих нервные связи между отдельными анализаторами. Например, когда человек ест, то он чувствует вкус, запах пищи и ощущает её температуру.

Если раздражитель вызывает боль или нарушение деятельности анализатора — это будет верхний абсолютный порог чувствительности. Интервал от минимума до максимума определяет диапазон чувствительности (для звука от 20 Гц до 20 кГц).

У человека рецепторы настроены на следующие раздражители:

· электромагнитные колебания светового диапазона — фоторецепторы в сетчатке глаза;

· механические колебания воздуха — фонорецепторы уха;

· изменение гидростатического и осмотического давления крови — баро- и осморецепторы;

· изменение положения тела относительно вектора гравитации — рецепторы вестибулярного аппарата.

Кроме того, есть хеморецепторы (реагируют на воздействие химических веществ), терморецепторы (воспринимают температурные изменения как внутри организма, так и в окружающей среде), тактильные рецепторы и болевые.

В ответ на изменение условий окружающей среды, чтобы внешние раздражители не вызывали повреждений и гибели организма, в нём формируются компенсаторные реакции, которые могут быть: поведенческими (изменение места пребывания, отдёргивание руки от горячего или холодного) или внутренними (изменение механизма терморегуляции в ответ на изменение параметров микроклимата).

Человек обладает рядом важных специализированных периферических образований — органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей. К ним относятся органы зрения, слуха, обоняния, вкуса, осязания.

Нельзя путать понятия "органы чувств" и "рецептор". Например, глаз — это орган зрения, а сетчатка — фоторецептор, один из компонентов органа зрения. Органы чувств сами по себе не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.

Зрительный анализатор включает в себя глаз, зрительный нерв, зрительный центр в затылочной части коры головного мозга. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

Приспособление глаза к различию данного объекта в данных условиях осуществляется путём трёх процессов без участия воли человека.

Аккомодация — изменение кривизны хрусталика так, чтобы изображение предмета оказалось в плоскости сетчатки (наведение на фокус).

Конвергенция — поворот осей зрения обоих глаз так, чтобы они пересеклись на объекте различия.

Адаптация — приспособление глаза к данному уровню яркости. В период адаптации глаз работает с пониженной работоспособностью, поэтому необходимо избегать частой и глубокой переадаптации.

Слух — способность организма принимать и различать звуковые колебания слуховым анализатором в диапазоне от 16 до 20000 Гц.

Обоняние — способность воспринимать запахи. Рецепторы расположены в слизистой оболочке верхнего и среднего носовых ходов.

Человек обладает разной степенью обоняния к различным пахучим веществам. Приятные запахи улучшают самочувствие человека, а неприятные — действуют угнетающе, вызывают отрицательные реакции вплоть до тошноты, рвоты, обморока (сероводород, бензин), способны изменять температуру кожи, вызывать отвращение к пище, приводить к подавленности и раздражительности.

Вкус — ощущение, возникающее при воздействии определённых химических веществ, растворимых в воде, на вкусовые рецепторы, расположенные на различных участках языка.

Вкус складывается из четырёх простых вкусовых ощущений: кислое, солёное, сладкое и горькое.

Функции и виды анализаторов человека (Таблица)

Все остальные вариации вкуса — это комбинации из основных ощущений. Различные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка чувствителен к сладкому, края языка — к кислому, кончик и край языка — к солёному, корень языка — к горькому. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Осязание — сложное ощущение, возникающее при раздражении рецепторов кожи, наружных частей слизистых оболочек и мышечно-суставного аппарата.

Кожный анализатор воспринимает внешние механические, температурные, химические и другие раздражители кожи.

Одна из основных функций кожи — защитная. Растяжения, ушибы, давления обезвреживаются упругой жировой подстилкой и эластичностью кожи. Роговой слой предохраняет глубокие слои кожи от высыхания и весьма устойчив к различным химическим веществам. Пигмент меланин предохраняет кожу от воздействия ультрафиолетовых лучей. Неповреждённый слой кожи непроницаем для инфекций, а кожное сало и пот создают гибельную кислую среду для микробов.

Важная защитная функция кожи — участие в терморегуляции, т.к. 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре окружающей среды кожные сосуды расширяются и теплоотдача конвекцией усиливается. При низкой температуре сосуды суживаются, кожа бледнеет, теплоотдача уменьшается. Отдача тепла через кожу идёт также и потоотделением.

Секреторная функция осуществляется через сальные и потовые железы. С кожным салом и потом выделяются йод, бром, токсические вещества.

Обменная функция кожи — участие в регуляции общего обмена веществ в организме (водного, минерального).

Рецепторная функция кожи — восприятие извне и передача сигналов в ЦНС.

Виды кожной чувствительности: тактильная, болевая, температурная.

С помощью анализаторов человек получает информацию о внешнем мире, которая определяет работу функциональных систем организма и поведение человека.

Максимальные скорости передачи информации, принимаемой человеком с помощью различных органов чувств, приведены в таб. 1.6.1

Таблица 1. Характеристики органов чувств

Проводящий путь зрительноговестибулярного анализатора 

Лекция 5. Анализаторы

Анализаторы – это нейро-сенсорные органы, которые способны регистрировать импульсы в центральной части анализатора. Впервые понятие анализаторов ввел Семенов и он выделил в анализаторах 3 составляющие их структуры:

    рецепторная часть (тепло, холод)

    проводящая часть (слуховой нерв, зрительный)

    центральная часть, которая представлена определенной зоной коры больших полушарий.

У человека выделяют зрительный и слуховой анализаторы, кроме того, вестибулярный, обонятельный и тактильный анализаторы.

Зрительный анализатор.

Это нейро-сенсорный орган, который способен регистрировать электромагнитные лучи видимой части спектра. Лучи, находящиеся ниже зоны восприятия называются инфракрасными, выше – УФ.

Рецепторной частью анализатора является рецепторы сетчатки, т.к. палочки и колбочки. Проводящей частью – зрительные нервы, которые образуют хиазму на уровне среднего мозга. Центральной частью являются воспринимающие области коры больших полушарий (затылочные доли).

Орган зрения.

Для человека характерен парный орган зрения – глаза, которые залегают в глазнице. К стенкам глазницы глаза присоединятся за счет 3 пар глазо-двигательных мышц. Глаза находятся под защитой бровей, ресниц, век. В верхней части глазницы над глазом находится слезная железа. Её секрет – слезы – смачивают поверхность глаза, препятствуют ее пересыханию, а также содержат бактерицидные вещества, например, лизоцин,который препятствует развитию на слизистой бактерий. Частично слезы попадают через проток в носовую полость.

Глаз окружен оболочками, причем самая наружная оболочка глаза – белочная оболочка, или склера, на передней стороне переходит в более толстую и прозрачную роговицу. Кроме того склера соединяется со слизистой выстилкой века, формируя конъюнктиву, которая удерживает глаз в глазнице, и, кроме того, защищает роговицу от внешних воздействий.

Более внутренняя оболочка глаза – это сосудистая оболочка, которая содержит капилляры кровеносной системы, т.к. они отсутствуют в самой сетчатке, т.е. основная функция сосудистой оболочки – трофическая.

Самая внутренняя часть сосудистой оболочки – это пигментный слой, где располагаются пигменты: фусцин и меланин. В пигментный слой погружены наружные членики рецепторов палочек и колбочек, поэтому основная функция пигментного слоя заключается в удержании лучей и в возбуждении рецепторов. На передней стороне глаза сосудистая оболочка и пигментный слой переходят в радужную оболочку, причем эта оболочка прерывиста и перерыв в ней называется зрачком.

Диафрагма зрачка может постоянно меняться в зависимости от освещения. Диафрагма зрачка изменяется в зависимости от сокращения кольцевых и радиальных мускульных волокон, которые иннервируются парасимпатической системой.

Самая внутренняя оболочка глаза – сетчатка – содержит рецепторы: палочки и колбочки. Концентрация рецепторов не одинакова в различных частях глаза: палочки преобладают на периферии глаза, колбочки – в центре глаза, в особенности в районе, так называемой, центральной ямки. Здесь образуется желтое пятно, т.е. максимальная концентрация колбочек, и здесь наиболее хорошо воспринимаются цвета. Рецепторы оплетены нейронами, аксоны которых, собираясь вместе, формируют зрительный нерв.

Место выхода зрительного нерва называется слепым пятном.

К светопреломляющим оптическим структурам глаза относят:

    роговица

    водянистая влага, заполняющая камеры глаза

    хрусталик

    стекловидное тело,

причем сила преломления измеряется в диоптриях.

На сетчатке каждого глаза за счет преломляющей силы сред, в первую очередь хрусталика, строится действительное, обратное и уменьшенное изображение. Человек видит в прямом виде благодаря ежедневной тренировке зрительного анализатора и показателей с других анализаторов.

Оптическая установка глаза на объект, который перемещается относительный глаз, называется аккомодацией, причем лучи, отраженные от объекта в норме, должны сходиться в точку фокуса на сетчатку. Аккомодация достигается при помощи изменения преломляющей силы хрусталика. Например, если предмет находится близко от глаз, ресничная мышца сокращается, цинновые связки расслабляются, хрусталик принимает форму цилиндра, его преломляющая сила максимальна и лучи сходятся в точку фокуса на сетчатке. Если предмет находится далеко от сетчатки, ресничная мышца расслабляется, цинновые связки натягиваются, хрусталик принимает плоскую форму, его преломляющая сила минимальна, и лучи сходятся в точку фокуса на сетчатку. Считается, что ближайшая точка ясного видения находится на таком минимальном расстоянии от глаз, когда 2 ближайшие точки объекта хорошо различимы.

Дальняя рамка ясного видения залегает в бесконечности, однако заметная аккомодация наблюдается, только когда расстояние до объекта не превышает 60 метров. Очень хорошая аккомодация наблюдается, когда расстояние до объекта становится 20 метров.

Патологии аккомодации.

В норме лучи сходятся в точку фокуса на сетчатке глаза.

Близорукость миопия – в этом случае лучи сходятся в точку фокуса до сетчатки.

Причины миопии:

    врожденная (глаз больше норма на 2-3 мм)

    ухудшение эластичности связок, ресничная мышца утомлена и наблюдается спазм аккомодации.

Помогают двояковогнутые стекла.

Дальнозоркость – в этом случае параллельный пучок света собирается в точку фокуса за сетчаткой.

Причины:

    длина глаза меньше нормы на 2-3 мм

    неэластичность связок, которая наблюдается с возрастом, поэтому после 40 развивается возрастная дальнозоркость.

Помогают двояковыпуклые стекла.

Астигматизм – в этом случае кривизна роговицы повышена, и лучи вообще не сходятся в точку фокуса. Помогают цилиндрические стекла.

Сетчатка глаза.

Сетчатка глаза представляет собой совокупность рецепторов (палочек и колбочек), т.е. является периферической частью зрительного анализатора.

Строение сетчатки напоминаем строение 3хнейронной сети. Наружной частью рецепторов погружены в пигментный слой; здесь, в пигментном слое, находятся пигменты, которые удерживают световые лучи. Рецепторы связаны со слоем биполярных нейронов, причем каждый такой нейрон связан только с одним рецептором. Биполярные нейроны связаны с мультиполярным, причем аксоны мультиполярных нейронов, объединяясь, образуют зрительный нерв. А одним мультиполярный нейрон может быть связан сразу с несколькими биполярными. Между мультиполярными нейронами находится звездчатая клетка, которая соединяет в единую сеть все рецептивные поля.

Глаз человека из всех наземных животных инвертирован. Это значит, что луч сета попадает в начале на стекловидное тело, затем на слои нейронов, и только затем на рецепторы. Таким образом, до сетчатки доходит рассеянный свет и рецепторы не поражаются. У многих морских животных глаз не инвертирован, т.е. рассеянный свет попадает прямо на рецепторы. Палочки и колбочки содержат пигменты, которые распадаются под воздействием света. В палочках содержится пигмент родопсин, в колбочках – йодапсин.

Родопсин способен распадаться на пигмент ретинен и белок опсин под действием даже небольшого количества света. Поэтому палочки обеспечивают зрение в сумерках.

Йодапсинов 3 вида и он распадается под действием интенсивного освещения, поэтому йодапсины воспринимают цвет, а за счет 3 видов этого пигмента воспринимаются все цвета видимой части спектра.

Фотохимическая реакция распада родопсина вызывает деполяризацию мембраны палочки, и эта волна деполяризации охватывает сначала биполярные нейроны, а затем мультиполярные. При дальнейшем действии света пигмент ретин превращается в витамин А. Обратный синтез родопсина происходит как на свету, так и в темноте, однако в темноте идет быстрее, поэтому при длительном пребывании на ярком свету, либо при воздействии света, отраженного от снега, или нехватке витамина А наблюдается болезнь гемералопия, или куриная слепота.

Патологии колбочек связаны с патологиями цветовосприятия, т.к. колбочки отвечают за восприятие цвета, оттенков и насыщенности:

    частичная потеря цветоощущения

    дальтонизм (человек не различает определенные цвета спектра: красный=зеленый, желтый=синий)

    полная потеря цветоощущения (ахроматическое зрение)

Для человека характерно зрение двумя глазами, или бинокулярное зрение. Оно позволяет правильно оценить расстояние до предмета, оценить фактуру, объем, рельефность, причем лучи, отраженные от одной точки предмета, способны фокусироваться в одном месте на сетчатках обоих глаз (идентичная фиксация), либо в разных местах (неидентичная фиксация).

Благодаря неидентичной фиксации человек воспринимает рельефность и объем. Импульсы по зрительным нервам направлены в центры в затылочных долях, где и формируется общая картинка.

Слуховой анализатор.

Второй ведущий анализатор у человека. Это нейро-сенсорный орган, который воспринимает звуковые колебания в определенном диапазоне от 16 тыс. до 22 тыс. кГц. Область ниже восприятия – инфразвук, выше восприятия – ультразвук.

Слуховой анализатор состоит и 3 частей:

    рецепторная часть. Представлена механо-рецепторами внутреннего уха, которые формируют кортив орган

    слуховые нервы, которые образуют хиазму на уровне моста

    центральная часть, которая включает определенные центры в височных долях коры.

Орган слуха.

Для человека характерен парный орган слуха, который включает наружное ухо, среднее ухо и внутреннее ухо.

Наружное ухо представлено ушной раковиной и слуховым проходом. Раковина осуществляет направленный прием звука. Слуховой проход 2,5 см покрыт ресничным эпителием. В эпителиальных клетках вырабатывается секрет, особенно в маленьких одноклеточных железках, которые синтезируют ушную серу. Она выполняет функцию защиты, т.к. на ней оседают пыль, и, кроме того, сера содержит бактерицидные вещества, которые убивают бактерии. Кроме того, воздух в ушном проходе согревается и увлажняется. Ушной проход заканчивается барабанной перепонкой, которая имеет волокнистую структуру. Звуковые волны ударяют в барабанную перепонку и волокна перепонки начинают колебаться, что приводит к колебанию косточек среднего уха.

Среднее ухо представляет собой полость, заполненную воздухом, причем для выравнивания давления между средним ухом и носоглоткой возникает связь в виде Евстахиевой трубы. В среднем ухе располагаются косточки: молоточек, наковальня и стремечко. Молоточек своей рукояткой связан с барабанной перепонкой, он контактирует с наковальней, а наковальня со стремечком, причем площадь контакта поверхности от барабанной перепонки к стремечку, которое располагается на овальном окне, уменьшается, и это дает возможность усиливать слабые звуки и ослаблять сильные. Таким образом, среднее ухо принимает участие в передачи колебаний от барабанной перепонки к внутреннему уху.

Внутреннее ухо представляет собой костный лабиринт в виде улитки, которая закручена 2,5 оборота в височной кости. С полостью среднего уха костный лабиринт сообщается при помощи овального и круглого окна, которые затянуты мембранными перепонками, причем на мембране овального окна располагается косточка стремечко. Внутри костного лабиринта проходит перепончатый лабиринт, представленный 2 мембранами: базальная мембрана и рейснерова мембрана. На вершине улитки мембраны соединяются, но в целом эти мембраны делят улитку на 3 канала, или лестницы. Вск каналы внутреннего уха заполнены жидкостью, причем улитковый канал заполнен эндолимфой, а барабанный и преддверья заполнены перелимфой. Эти жидкости несколько различны по составу.

Звуковая волна приводит к колебаниям косточек среднего уха. Наблюдаются колебания мембраны овального окна, и эти колебания передаются на жидкость внутреннего уха, и они гасятся на мембране круглого окна, причем круглое окно выступает в роли резонатора. Колебания передаются на базальную мембрану и эндолимфу, и регистрируются находящимися здесь кортиевым органом. Кортиев орган – это рецепторная часть анализатора, который представлен волосковидными клетками и эти клетки располагаются на основной мембране в несколько рядов. Эти клетки закрыты покровной мембраной, которая одним концом присоединяется к базальной мембране в основании улитки, а второй конец её свободен.

Колебания жидкости приводят к колебанию основной мембраны и к тому, что покровная мембрана кортиевого органа начинает раздражать волоски механо-рецепторов. Мембрана рецепторов деполяризуется, и волна деполяризации идет по слуховому нерву.

Волокна основной мембраны имеют разную толщину и могут колебаться с разной амплитудой, что обеспечивает дифференцировку высоких и низких звуков.

Считается, что в основании улитки воспринимаются высокие звуки, на вершине улитки – низкие звуки. Существует несколько гипотез восприятия и частотного анализа звука:

  1. гипотеза резонанса. Считается, что в основании улитки базальная мембрана приходит в резонанс со звуковой волной и покровная мембрана раздражает небольшую группу волосковидных клеток.
  2. гипотеза залпов. Считается, что на вершине улитки покровная мембрана раздражает целые рецептивные поля и в ЦНС отправляется целый залп импульсов. Считается, что таким образом воспринимаются низкие звуки.

Вестибулярный аппарат.

Вестибулярный анализатор.

Это нейро-сенсорный орган, который регистрирует изменения положения тела либо частей тела, относительно друг друга. Вестибулярный анализатор состоит из 3 частей:

    механо-рецепторы вестибулярного аппарата

    вестибулярная ветвь слухового нерва

    центральная часть в височной кости

Вестибулярный аппарат (в.а) залегает в височной кости и связан с костным лабиринтом внутреннего уха, хотя в.а. и улитка внутреннего уха имеют абсолютно различное происхождение.

В.а. представлен костным лабиринтом, заполненным жидкостью, внутри которого проходит перепончатый лабиринт, также заполненный жидкостью. Перепончатый лабиринт формирует органы преддверья, который представлены круглым и овальным мешочками и 3 полуокружными каналами, причем каждый канал связан и с круглым, ис овальным мешочком. На одном из концов канала находится расширение, или ампула.

Органы преддверья выстланы эпителием и заполнены жидкостью. Среди клеток эпителия располагаются группами волосковидные клетки. Сверху над клетками находится студенистая мембрана, в которую погружены волоски клеток.

Анализаторы человека

В мембране находятся кристаллы Ca2+, называемые отолитами, или статоцистами. При перемещении тела, либо головы овальный и круглый мешочки начинают смещаться друг относительно друга, начинают смещаться отолиты, которые тянут за собой студенистую мембрану и она раздражает волосковидные клетки.

Органы преддверья воспринимают начало и конец прямолинейного движения, прямолинейное ускорение, силу тяжести. Полуокружные каналы воспринимают вращательные движения и угловое ускорение, они заполнены жидкостью, причем волосковидные клетки находятся только в ампулах. При изменении положения тела жидкость, заполняющая ампулы, отстает от стенок ампулы и раздражает волоски.

Вкусовой анализатор.

Вкусовые рецепторы располагаются во вкусовых сосочках, которые формируются на языке и на слизистой рта. Импульсы от рецепторов идут в теменные доли коры больших полушарий. Считается, что кончик языка воспринимает сладкий вкус, у корня языка – горький вкус, по бокам – кислый и соленый.

Обонятельный анализатор.

Это единственный анализатор, который не имеет представительства в коре. Рецепторы располагаются в носовой полости и способны воспринимать летучие соединения. Эти импульсы анализируются на уровне древней коры, а также за счет лимбической системы мозга.

Осязательный анализатор.

Рецепторная часть этого анализатора относится к коже, где располагаются рецепторы боли, тепла, холода – тактильные рецепторы. Эти рецепторы могут быть представлены свободными нервными окончаниями, например, рецепторы боли, а также инкапсулированными нервными окончаниями, например, рецепторы давления. Чувствительные нервы этого анализатора формируют перекрест на уровне варолиевого моста, а центральная часть анализатора находится в теменных долях коры.

Антропологические методы оценки волос

2. Понятие об антропогенезе. Основные теории происхождения человека. Краткая характеристика космизма (внеземного происхождения)

Происхождение человека, как биологического вида. Каждого человека, как только он начинал осознавать себя личностью посещал вопрос "откуда мы взялись". Несмотря на то, что вопрос звучит абсолютно банально, единого ответа на него не существует…

Биоэкологические особенности коллекции видов Средиземноморья Сочинского парка "Дендрарий"

1.3 Краткая характеристика растительности Средиземноморья

Бонитировка Михайловского района по сибирской косуле

1. Краткая физико-географическая характеристика

Михайловского района. Михайловский район находится на юге Зейско-Буреинской равнины. Граничит на Западе с Константиновским и Тамбовским, на Севере с Октябрьским, на Севере-Востоке с Завитинским, на Востоке с Бурейскими районами…

Вирус чумы плотоядных

2.1.2 Краткая характеристика клинических признаков

Инкубационный период длится 4—20 дней. Чума плотоядных может протекать молниеносно, сверхостро, остро, подостро, абортивно, типично и атипично. По клиническим проявлениям различают катаральную, легочную, кишечную и нервную формы болезни…

Динамика развития зообентоса степных рек Краснодарского края

1.2 Краткая характеристика района исследования

Азово-Кубанской низменность расположена в северо-западной части Краснодарского края, на севере граничит с Нижнедонской низиной и Кумо-Манычской впадиной, на юге — с предгорьями Большого Кавказа, на востоке — со Ставропольской возвышенностью…

Класс млекопитающие, или звери (mammalia, или theria)

2. Краткая характеристика класса млекопитающих

Млекопитающие — наиболее высокоорганизованный класс позвоночных животных. Размеры их тела различны: у карликовой белозубки — 3,5 см, синего кита- 33 м, масса тела соответственно 1,5 г и 120 т…

Мутационная изменчивость

4. Краткая характеристика видов мутаций

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

Основные анализаторы человека

По характеру изменения генома, т.е. совокупности генов…

Отдел покрытосеменные (цветковые)

2.1 Краткая характеристика классов

Покрытосеменные разделяют на два класса — двудольные и однодольные. Для двудольных характерны: две семядоли в семени, открытые проводящие пучки (с камбием), сохранение в течение всей жизни главного корня (у особей, родившихся из семян)…

Понятие возраста человека

2. Основные стадии эволюции человека. Краткая характеристика австралопитека

Большое значение для изучения вопроса имеет синхронизация археологических эпох с геологическими периодами истории Земли. Одна из "революционных" теорий о месте человека в природе и истории принадлежит Ч. Дарвину. С момента публикации в 1871 г…

Проблемы индивидуальной перцепции

I.1.1 Виды анализаторов. Строение анализаторов

Анализатором, или сенсорной системой, является совокупность периферических и центральных образований нервов, способных к преобразованию действий раздражителей в адекватный нервный импульс…

Система удобрений

2. Краткая характеристика хозяйства

ОАО "Надежда" располагается на территории Морозовского района Ростовской области, в 271 километре от Ростова-на-Дону. Хозяйство занимает площадь в 13139,3, из них: пашня — 9777 га, выгоны, залежи, перелоги — 1600 га, сады, ягодники — 260 га…

Слуховой анализатор

1. Значение изучения анализаторов человека с точки зрения современных информационных технологий

Уже несколько десятков лет назад люди предпринимали попытки создания систем синтеза и распознавания речи в современных информационных технологиях. Разумеется, все эти попытки начинались с исследования анатомии и принципов работы речевых…

Теплообразование и терморегуляция человеческого организма

1.1 Структурно-функциональная характеристика, классификация и значение анализаторов в познании окружающего мира

Анализатор — нервный аппарат, осуществляющий функцию анализа и синтеза раздражителей, исходящих из внешней и внутренней среды организма. Понятие анализатор введено И.П. Павловым…

Учение о ноосфере В.И. Вернадского

1. Краткая характеристика ноосферы

Учение о ноосфере возникло в рамках космизма — философского учения о неразрывном единстве человека и космоса, человека и Вселенной, о регулируемой эволюции мира. Понятие ноосферы как обтекающей земной шар идеальной, «мыслящей» оболочки…

Флора парка им. И.Н. Ульянова

1.5 Растительность (краткая характеристика).

В прошлом значительная площадь была занята степной растительностью, ныне почти сплошь уничтоженной распашкой и заменённой посевами сельскохозяйственных и декоративных культур. Кое-где сохранились массивы широколиственных лесов…

Анализаторы, органы чувств и их значение

Анализаторы. Все живые организмы, в том числе и человек, нуждаются в информации об окружающей среде. Эту возможность им обеспечивают сенсорные (чувствительные) системы. Деятельность любой сенсорной системы начинается с восприятия рецепторами энергии раздражителя, трансформации ее в нервные импульсы и передачи их через цепь нейронов в мозг, в котором нервные импульсы преобразуются в специфические ощущения - зрительные, обонятельные, слуховые и т. п.

Изучая физиологию сенсорных систем, академик И. П.

Анализаторы человека. Основное органы чувств и их функции

Павлов создал учение об анализаторах. Анализаторами называются сложные нервные механизмы, посредством которых нервная система получает раздражения из внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. Каждый анализатор состоит из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен рецепторами -чувствительными нервными окончаниями, обладающими избирательной чувствительностью только к определенному виду раздражителя. Рецепторы входят в состав соответствующих органов чувств. В сложных органах чувств (зрения, слуха, вкуса) кроме рецепторов есть ивспомогательные структуры, которые обеспечивают лучшее восприятие раздражителя, а также выполняют защитную, опорную и другие функции. Например, вспомогательные структуры зрительного анализатора представлены глазом, а зрительные рецепторы - лишь чувствительными клетками (палочки и колбочки). Рецепторы бывают наружные, расположенные на поверхности тела и воспринимающие раздражения из внешней среды, ивнутренние, которые воспринимают раздражения из внутренних органов и внутренней среды организма,

Проводниковый отдел анализатора представлен нервными волокнами, проводящими нервные импульсы от рецептора в центральную нервную систему (например, зрительный, слуховой, обонятельный нерв и т. п.).

Центральный отдел анализатора - это определенный участок коры головного мозга, где происходит анализ и синтез поступившей сенсорной информации и преобразование ее в специфическое ощущение (зрительное, обонятельное и т. д.).

Обязательным условием нормального функционирования анализатора является целостность каждого из его трех отделов.

Зрительный анализатор

Зрительный анализатор представляет собой совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения с длиной волны 400 — 700 нм и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения. С помощью глаза воспринимается 80-90% всей информации об окружающем мире.

Благодаря деятельности зрительного анализатора различают освещенность предметов, их цвет, форму, величину, направление передвижения, расстояние, на которое они удалены от глаза и друг от друга. Все это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности.

Наряду с понятием зрительного анализатора существует понятие органа зрения.

Орган зрения — это глаз, включающий три различных в функциональном отношении элемента:

глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты;

защитные приспособления, т.е. наружные оболочки глаза (склера и роговица), слезный аппарат, веки, ресницы, брови;

двигательный аппарат, представленный тремя парами глазных мышц (наружная и внутренняя прямые, верхняя и нижняя прямые, верхняя и нижняя косые), которые иннервируются III (глазодвигательный нерв), IV (блоковый нерв) и VI (отводящий нерв) парами черепных нервов.

Внешние анализаторы

Прием и анализ информации осуществляется с помощью анализаторов. Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть-рецепторы, которые находятся на поверхности тела для приема внешней информации, либо во внутренних органах.

внешние сигналы ® рецептор® нервные связи® головной мозг

В зависимости от специфики принимаемых сигналов различают: внешние (зрительный, слуховой, болевой, температурный, обонятельный, вкусовой) и внутренние (вестибулярный, давления, кинестетический) анализаторы.

Основная характеристика анализаторов – чувствительность.

Нижний абсолютный порог чувствительности — минимальная величина раздражителя, на который начинает реагировать анализатор.

Если раздражитель вызывает боль или нарушение деятельности анализатора — это будет верхний абсолютный порог чувствительности. Интервал от минимума до максимума определяет диапазон чувствительности (например для звука от 20 Гц до 20 кГц).

85-90% всей информации о внешней среде человек получает через зрительный анализатор. Прием и анализ информации осуществляется в диапазоне (световом)- 360-760 электромагнитных волн. Глаз может различать 7 основных цветов и более сотни оттенков. Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

0,38 — 0,455 мкм — фиолетовый цвет;

0,455 — 0,47 мкм — синий цвет;

0,47 — 0,5 мкм — голубой цвет;

0,5 — 0,55 мкм — зеленый цвет;

0,55 — 0,59 мкм — жёлтый цвет;

0,59 — 0,61 мкм — оранжевый цвет;

0,61 — 0,77 мкм — красный цвет.

Наибольшая чувствительность достигается при длине волн 0,55 мкм

Минимальная интенсивность светового воздействия, вызывающая ощущение. адаптации зрительного анализатора. К временным характеристикам восприятия сигналов относится: латентный период- время от подачи сигнала до момента возникновения ощущения 0,15-0,22 с.; порог обнаружения сигнала при большей яркости-0,001 с, при длительности вспышки-0,1 с.; неполная темновая адаптация- от нескольких секунд до нескольких минут.

С помощью звуковых сигналов человек получает до 10% информации. Слуховые сигналы применяются для сосредоточенного внимания человека, для передачи информации, для разгрузки зрительной системы. Особенностями слухового анализатора являются:

— способность быть готовым к приему информации в любой момент времени;

— способность воспринимать звуки в широком диапазоне частот и выделять необходимые;

— способность устанавливать с точностью месторасположение источника звука.

Воспринимающая часть слухового анализатора — ухо, которое делится на три отдела: наружное, среднее и внутреннее. Звуковые волны, проникая в наружный слуховой проход, приводят в колебания барабанную перепонку и через цепь слуховых косточек передаются в полость улитки внутреннего уха. Колебания жидкости в канале приводит в движение волокна основной перепонки в резонанс звукам, поступающим в ухо. Колебания волокон улитки приводят в движение расположенные в них клетки кортиева органа, возникает нервный импульс, который передаётся в соответствующие отделы коры головного мозга. Порог болевых ощущений 130 — 140 дБ.

Кожный анализатор обеспечивает восприятие прикосновения, боли, тепла, холода, вибрации.

Анализаторы человека и их основные характеристики.

Одна из основных функций кожи- защитная (от механических, химических повреждений, от патогенных микроорганизмов и др). Важной функцией кожи является ее участие в терморегуляции 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре внешней среды кожные сосуды расширяются (теплотдача усиливается), при низкой температуре сосуды суживаются (теплотдача уменьшается). Обменная функция кожи заключается в участии в процессах регуляции общего обмена веществ в организме (водного, минерального, углеводного). Секреторная функция обеспечивается сальными и потовыми железами. С кожным салом могут выделяться эндогенные яды, микробные токсины.

Обонятельный анализатор предназначен для восприятия человеком различных запахов (диапазон до 400 наименований).Рецепторы расположены на слизистой оболочки в носовой полости. Условиями восприятия запахов являются летучесть пахучего вещества, растворимость веществ. Запахи могут сигнализировать человека о нарушениях технологических процессов.

Существуют четыре вида вкусовых ощущений: сладкий, кислый, горький, соленый, остальные их комбинации. Абсолютные пороги вкусового анализатора в 1000 раз выше чем обонятельного. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Чувствительность вкусового анализатора груба, в среднем составляет 20%. Восстановление вкусовой чувствительности после воздействия различных раздражителей заканчивается через 10-15 минут

За восприятие и анализ внешних раздражителей отвечают анализаторы человека, являющиеся подсистемой центральной нервной системы (ЦНС). Сигналы воспринимаются рецепторами - периферийной частью анализатора, а обрабатываются мозгом - центральной частью.

Отделы

Анализатор - это совокупность нейронов, которую часто называют сенсорной системой. Любой анализатор имеет три отдела:

  • периферический - чувствительные нервные окончания (рецепторы), которые входят в состав органов чувств (зрение, слух, вкус, осязание);
  • проводниковый - нервные волокна, цепочка разных типов нейронов, проводящих сигнал (нервный импульс) от рецептора к центральной нервной системе;
  • центральный - участок коры головного мозга, анализирующий и преобразовывающий сигнал в ощущение.

Рис. 1. Отделы анализаторов.

Каждому специфичному анализатору соответствует определённый участок коры головного мозга, который называется корковым ядром анализатора.

Виды

Рецепторы, а соответственно и анализаторы, могут быть двух видов :

  • внешние (экстероцепторы) - располагаются около или на поверхности тела и воспринимают раздражители внешней среды (свет, тепло, влажность);
  • внутренние (интероцепторы) - находятся в стенках внутренних органов и воспринимают раздражители внутренней среды.

Рис. 2. Расположение центров восприятия в головном мозге.

Шесть типов внешнего восприятия описаны в таблице “Анализаторы человека”.

Анализатор

Рецепторы

Проводящие пути

Центральные отделы

Зрительный

Фоторецепторы сетчатки глаза

Зрительный нерв

Затылочная доля коры больших полушарий

Слуховой

Волосковые клетки спирального (кортиева) органа улитки

Слуховой нерв

Верхняя извилина височной доли

Вкусовой

Рецепторы языка

Языкоглоточный нерв

Передний отдел височной доли

Осязательный

Рецепторные клетки: - на голой коже - тельца Мейснера, залегающие в сосочковом слое кожи;

На волосяной поверхности - рецепторы волосяного фолликула;

Вибрации - тельца Пачини

Скелетно-мышечные нервы, спиной, продолговатый, промежуточный мозг

Обонятельный

Рецепторы полости носа

Обонятельный нерв

Передний отдел височной доли

Температурный

Тепловые (тельца Руффини) и холодовые (колбы Краузе) рецепторы

Миелиновые (холод) и безмиелиновые (тепло) волокна

Задняя центральная извилина теменной доли

Рис. 3. Расположение рецепторов в коже.

К внутренним относят рецепторы давления, вестибулярный аппарат, кинестетические или двигательные анализаторы.

ТОП-4 статьи которые читают вместе с этой

Мономодальные рецепторы воспринимают один тип раздражения, бимодальные - два типа, полимодальные - несколько типов. Например, мономодальные фоторецепторы воспринимают только свет, осязательные бимодальные - боль и тепло. К полимодальным относится подавляющее большинство болевых рецепторов (ноцицепторов).

Характерные особенности

Анализаторы, вне зависимости от типа, обладают рядом общих свойств :

  • высокая чувствительность к раздражителям, ограничивающаяся пороговой интенсивностью восприятия (чем ниже порог, тем выше чувствительность);
  • различность (дифференциация) чувствительности, позволяющая выделять раздражители по интенсивности;
  • адаптация, позволяющая приспосабливать уровень чувствительности к сильным раздражителям;
  • тренировка, проявляющаяся как в снижении чувствительности, так и в её повышении;
  • сохранение восприятия после прекращения действий раздражителя;
  • взаимодействие разных анализаторов друг с другом, позволяющее воспринимать полноту внешнего мира.

Примером особенности работы анализатора может служить запах краски. Люди с низким порогом чувствительности к запахам будут ощущать запах сильнее и активно реагировать (слезотечение, тошнота), чем люди с высоким порогом. Сильный запах анализаторы будут воспринимать интенсивнее, чем другие окружающие запахи. Со временем запах не будет ощущаться резко, т.к. произойдёт адаптация. Если постоянно находиться в помещении с краской, то чувствительность притупится. Однако выйдя из помещения на свежий воздух, некоторое время будет ощущаться, «мерещиться» запах краски.

Информацию о внешней и внутренней среде организма человек получает с помощью сенсорных систем (анализаторов) - системы чувствительных образований, воспринимающих и анализирующих различные внешние и внутренние раздражители.

Зрительный анализатор - глаз, зрительные нервы и зрительный центр, располагающийся в затылочной доле коры головного мозга. Глаз снабжен естественной защитой. Закрывающиеся веки защищают сетчатку глаза от сильного света, а роговицу - от механических воздействий; слезная жидкость смывает с поверхности глаз и век пылинки, убивает микробы благодаря наличию в ней лизоцима.

Слуховой анализатор - ухо, слуховой нерв и слуховой центр в коре головного мозга позволяют оценить мир звуков по интенсивности, высоте тона, определить направление прихода звука, распознать местонахождение источника звука без поворота головы. Этот эффект называется бинауральным слухом, который помогает анализировать акустическую информацию в присутствии посторонних шумов.

Обонятельный анализатор - рецепторы, расположенные в слизистой оболочке носовой раковины (60 млн. штук на 5 см 2), обонятельный центр в коре головного мозга. Человек ощущает запах сероводорода даже при концентрации 10-9 г/л.

Вкусовой анализатор - рецепторы, расположенные на поверхности языка, вкусовой центр в коре головного мозга.

Тактильная, температурная и болевая чувствительность. Посредством тактильных ощущений через рецепторы на коже можно узнать о трехмерных особенностях человеческого окружения, воспринимать тепло, холод, чувство боли.

Тактильный анализатор - рецепторы на коже (на 1 см 2 кожи находится около 25 рецепторов), воспринимающие ощущение прикосновения и давления, тактильный центр в коре головного мозга.

Температурный анализатор - рецепторы на коже, реагирующие на холод и тепло (холодовые - около 250 тыс., тепловые около - 30 тыс.) и температурный центр в коре головного мозга.

Болевой анализатор - рецепторы на теле, реагирующие на боль (на 1 см 2 кожи приходится около 100 рецепторов) и болевой центр в коре головного мозга. Биологический смысл боли состоит в том, что, являясь сигналом опасности, она мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.

Изучая физиологию сенсорных систем, академик И.П. Павлов создал учение об анализаторах. Анализаторами называются сложные нервные механизмы, посредством которых нервная система получает раздражения из внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. Каждый анализатор состоит из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен рецепторами-чувствительными нервными окончаниями, обладающими избирательной чувствительностью только к определенному виду раздражителя. Рецепторы входят в состав соответствующих органов чувств. В сложных органах чувств (зрения, слуха, вкуса) кроме рецепторов есть и вспомогательные структуры, которые обеспечивают лучшее восприятие раздражителя, а также выполняют защитную, опорную и другие функции. Например, вспомогательные структуры зрительного анализатора представлены глазом, а зрительные рецепторы - лишь чувствительными клетками (палочки и колбочки). Рецепторы бывают наружные, расположенные на поверхности тела и воспринимающие раздражения из внешней среды, и внутренние, которые воспринимают раздражения из внутренних органов и внутренней среды организма,

Проводниковый отдел анализатора представлен нервными волокнами, проводящими нервные импульсы от рецептора в центральную нервную систему (например, зрительный, слуховой, обонятельный нерв и т.п.).

Центральный отдел анализатора - это определенный участок коры головного мозга, где происходит анализ и синтез поступившей сенсорной информации и преобразование ее в специфическое ощущение (зрительное, обонятельное и т.д.).

Обязательным условием нормального функционирования анализатора является целостность каждого из его трех отделов.

Орган зрения. Наибольшее количество информации о внешнем мире (около 90%) человек получает с помощью органа зрения - глаза, состоящего из глазного яблока и вспомогательного аппарата.

Рис. 1. Схема строения глаза: 1 -ресничная мышца; 2 -радужная оболочка; 3 - водянистая влага; 4-5 - оптическая ось; б - зрачок; 7 - роговица; 8 - конъюнктива; 9 - хрусталик; 10 - стекловидное тело; 11 - белочная оболочка; 12 - сосудистая ободочка; 13 - сетчатка; 14 - зрительный нерв.

Глаз - это оптический аппарат. В его светопреломляющую систему входят: роговица, водянистая жидкость передней и задней камер, хрусталик и стекловидное тело. Лучи света проходят через каждый элемент оптической системы, преломляются, попадают на сетчатку и формируют уменьшенное и перевернутое изображение видимых глазом предметов.

Глаз чувствителен к видимому диапазону спектра электромагнитных волн от 0,38 до 0,77 мкм. В этих границах различные диапазоны волн вызывают различные ощущения (цвета) при воздействии на сетчатку:

  • 0,38-0,455 мкм - фиолетовый цвет;
  • 0,455-0,47 мкм - синий цвет;
  • 0,47-0,5 мкм - голубой цвет;
  • 0,5-0,55 мкм - зеленый цвет;
  • 0,55-0,59 мкм - жёлтый цвет;
  • 0,59-0,61 мкм - оранжевый цвет;
  • 0,61-0,77 мкм - красный цвет.

Приспособление глаза к различию данного объекта в данных условиях осуществляется путём трёх процессов без участия воли человека.

Аккомодация - изменение кривизны хрусталика так, чтобы изображение предмета оказалось в плоскости сетчатки (наведение на фокус).

Конвергенция - поворот осей зрения обоих глаз так, чтобы они пересеклись на объекте различия.

Адаптация - приспособление глаза к данному уровню яркости. В период адаптации глаз работает с пониженной работоспособностью, поэтому необходимо избегать частой и глубокой переадаптации.

Механизм световосприятия. В сетчатке находится около 7 млн. колбочек и 130 млн. палочек. Колбочки содержат зрительный пигмент иодопсин, позволяющий воспринимать цвета при дневном освещении. Колбочки бывают трех типов, каждый из которых обладает спектральной чувствительностью к красному, зеленому или синему цвету. Палочки благодаря наличию пигмента родопсина воспринимают сумеречный свет, не различая цвета предметов. Под воздействием световых лучей в светочувствительных рецепторах - палочках или колбочках - возникают сложные фотохимические реакции, сопровождающиеся расщеплением зрительных пигментов на более простые соединения. Это фотохимическое расщепление сопровождается возникновением возбуждения, которое в форме нервного импульса передается по зрительному нерву в подкорковые центры (средний и промежуточный мозг), а затем в затылочную долю коры больших полушарий, где преобразуется в зрительное ощущение. При отсутствии света (в темноте) зрительный пурпур регенерирует (восстанавливается).

Гигиена органа зрения.

Сохранению зрения способствуют следующие факторы:

  • 1) хорошее освещение рабочего места,
  • 2) расположение источника света слева,
  • 3) расстояние от глаза до рассматриваемого предмета должно быть около 30-35 см.

Чтение лежа или в транспорте приводит к ухудшению зрения, так как из-за постоянно меняющегося расстояния между книгой и хрусталиком происходит ослабление эластичности хрусталика и ресничной мышцы. Глаза следует беречь от попадания в них пыли и других частиц, слишком яркого света.

Слух - способность организма принимать и различать звуковые колебания слуховым анализатором в диапазоне от 16 до 20000 Гц.

Воспринимающая часть слухового анализатора - ухо, которое делится на три отдела: наружное, среднее и внутреннее. Звуковые волны, проникая в наружный слуховой проход, приводят в колебания барабанную перепонку и через цепь слуховых косточек передаются в полость улитки внутреннего уха. Колебания жидкости в канале приводит в движение волокна основной перепонки в резонанс звукам, поступающим в ухо. Колебания волокон улитки приводят в движение расположенные в них клетки кортиева органа, возникает нервный импульс, который передаётся в соответствующие отделы коры головного мозга.

Порог болевых ощущений 130-140 дБ.

Орган слуха. К органу слуха относятся наружное ухо, среднее и часть внутреннего (рис. 2).

Рис. 2. Схема строения уха: 1 - наружный слуховой проход; 2 - барабанная перепонка; 3 - полость среднего уха; 4-молоточек; 5 - наковальня; 6 - стремечко; 7 - полукружные каналы; 8 -улитка; 9 - евстахиева труба.

Наружное ухо состоит из ушной раковины и наружного слухового прохода, который заканчивается барабанной перепонкой. Среднее ухо расположено за барабанной перепонкой в височной кости черепа. Внутреннее ухо расположено в височной кости и представляет собой систему полостей и каналов, называемую лабиринтом. В совокупности эти элементы образуют рецепторный аппарат слухового анализатора - кортиевый орган.

Механизм восприятия звука. Колебания стремечка, упирающегося в мембрану овального окна, передаются жидкостям каналов улитки, что приводит к резонансным колебаниям волокон определенной длины основной мембраны. При этом звуки высокого тона вызывают колебания коротких волоконец, расположенных у основания улитки, а звуки низкого тона - колебания длинных волоконец, находящихся на ее вершине. При этом волосковые клетки касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению возбуждения, которое в виде нервных импульсов по волокнам слухового нерва передается в средний мозг, а затем в слуховую зону височной доли коры больших полушарий, где оно преобразуется в слуховое ощущение. Ухо человека способно воспринимать звуки в диапазоне частот от 20 до 20 000 Гц.

Гигиена органа слуха. Дня сохранения слуха следует избегать механических повреждений барабанной перепонки. Ушные раковины и наружный слуховой проход следует поддерживать в чистоте. При скоплении в ушах серы необходимо обращаться к врачу. Вредное действие на орган слуха оказывают сильные, длительно действующие шумы. Важно своевременно лечить простудные заболевания носоглотки, так как через евстахиеву трубу в барабанную полость могут проникнуть болезнетворные бактерии и вызвать воспаление.

Анализаторы являются специальными структурами организма, служащими для ввода внешней информации в мозг для последующей ее переработки.

Второстепенные термины

  • - рецепторы;
  • - ПДУ.

Рис. 3.

В процессе трудовой деятельности организм человека приспосабливается к изменениям окружающей среды благодаря регулирующей функции центральной нервной системы (ЦНС). Человек связан со средой с помощью анализаторов, которые состоят из рецепторов, проводящих нервных путей и мозгового конца в коре головного мозга. Мозговой конец состоит из ядра и рассеянных по коре головного мозга элементов, обеспечивающих нервные связи между отдельными анализаторами. Например, когда человек ест, то он чувствует вкус, запах пищи и ощущает её температуру.

Основная характеристика анализаторов - чувствительность.

Нижний абсолютный порог чувствительности - минимальная величина раздражителя, на который начинает реагировать анализатор.

Если раздражитель вызывает боль или нарушение деятельности анализатора - это будет верхний абсолютный порог чувствительности. Интервал от минимума до максимума определяет диапазон чувствительности (для звука от 20 Гц до 20 кГц).

У человека рецепторы настроены на следующие раздражители:

  • - электромагнитные колебания светового диапазона - фоторецепторы в сетчатке глаза;
  • - механические колебания воздуха - фонорецепторы уха;
  • - изменение гидростатического и осмотического давления крови - баро- и осморецепторы;
  • - изменение положения тела относительно вектора гравитации - рецепторы вестибулярного аппарата.

Кроме того, есть хеморецепторы (реагируют на воздействие химических веществ), терморецепторы (воспринимают температурные изменения как внутри организма, так и в окружающей среде), тактильные рецепторы и болевые.

В ответ на изменение условий окружающей среды, чтобы внешние раздражители не вызывали повреждений и гибели организма, в нём формируются компенсаторные реакции, которые могут быть: поведенческими (изменение места пребывания, отдёргивание руки от горячего или холодного) или внутренними (изменение механизма терморегуляции в ответ на изменение параметров микроклимата).

Человек обладает рядом важных специализированных периферических образований - органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей. К ним относятся органы зрения, слуха, обоняния, вкуса, осязания.

Обоняние - способность воспринимать запахи. Рецепторы расположены в слизистой оболочке верхнего и среднего носовых ходов.

Человек обладает разной степенью обоняния к различным пахучим веществам. Приятные запахи улучшают самочувствие человека, а неприятные - действуют угнетающе, вызывают отрицательные реакции вплоть до тошноты, рвоты, обморока (сероводород, бензин), способны изменять температуру кожи, вызывать отвращение к пище, приводить к подавленности и раздражительности.

Вкус - ощущение, возникающее при воздействии определённых химических веществ, растворимых в воде, на вкусовые рецепторы, расположенные на различных участках языка.

Вкус складывается из четырёх простых вкусовых ощущений: кислое, солёное, сладкое и горькое. Все остальные вариации вкуса - это комбинации из основных ощущений. Различные участки языка имеют разную чувствительность к вкусовым веществам: кончик языка чувствителен к сладкому, края языка - к кислому, кончик и край языка - к солёному, корень языка - к горькому. Механизм восприятия вкусовых ощущений связан с химическими реакциями. Предполагают, что каждый рецептор содержит высокочувствительные белковые вещества, распадающиеся при воздействии определённых вкусовых веществ.

Осязание - сложное ощущение, возникающее при раздражении рецепторов кожи, наружных частей слизистых оболочек и мышечно-суставного аппарата.

Кожный анализатор воспринимает внешние механические, температурные, химические и другие раздражители кожи.

Одна из основных функций кожи - защитная. Растяжения, ушибы, давления обезвреживаются упругой жировой подстилкой и эластичностью кожи. Роговой слой предохраняет глубокие слои кожи от высыхания и весьма устойчив к различным химическим веществам. Пигмент меланин предохраняет кожу от воздействия ультрафиолетовых лучей. Неповреждённый слой кожи непроницаем для инфекций, а кожное сало и пот создают гибельную кислую среду для микробов.

Важная защитная функция кожи - участие в терморегуляции, т.к. 80% всей теплоотдачи организма осуществляется кожей. При высокой температуре окружающей среды кожные сосуды расширяются и теплоотдача конвекцией усиливается. При низкой температуре сосуды суживаются, кожа бледнеет, теплоотдача уменьшается. Отдача тепла через кожу идёт также и потоотделением.

Секреторная функция осуществляется через сальные и потовые железы. С кожным салом и потом выделяются йод, бром, токсические вещества.

Обменная функция кожи - участие в регуляции общего обмена веществ в организме (водного, минерального).

Рецепторная функция кожи - восприятие извне и передача сигналов в ЦНС.

Виды кожной чувствительности: тактильная, болевая, температурная.

С помощью анализаторов человек получает информацию о внешнем мире, которая определяет работу функциональных систем организма и поведение человека.