Большая энциклопедия нефти и газа

Плавкие предохранители широко применяют в электротехнических установках для защиты электрооборудования от токов перегрузки и коротких замыканий. Это аппараты однократного действия, требующие замены плавкого элемента после каждого срабатывания. При токах, несущественно превышающих номинальное значение, нагрев вставки имеет установившийся характер, при котором все выделяемое в ней тепло отдается в окружающую среду. При этом, кроме вставки, приблизительно до этой же температуры нагреваются все элементы предохранителя. Температура нагрева при этом такова, что плавкая вставка не расплавляется.

В аварийном режиме при быстром и значительном увеличении тока, проходящего через плавкий элемент, последний плавится, разрывая электрическую цепь.

Плавление вставки и разрыв тока должны произойти за возможно более короткое время и при небольших кратностях аварийного тока относительно номинального значения. Резкое сокращение времени плавления достигается применением специальной формы плавкой вставки либо использованием металлургического эффекта.

Плавкую вставку выполняют в виде пластины с вырезами, уменьшающими площадь ее сечения (рис. 319) на отдельных участках. На этих суженных перешейках выделяется больше тепла, чем на широких частях, из-за повышения сопротивления. В нормальном режиме работы избыточное тепло вследствие теплопроводности материала вставки успевает распространиться к более широким частям и вся вставка имеет практически одну температуру. При перегрузках нагрев суженных участков идет быстрее и тепло не успевает отводиться к широким участкам. В результате температура перешейков быстро достигает значения температуры плавления, что приводит к разрыву цепи.

Быстродействующие плавкие предохранители имеют несколько перешейков, чередующихся с широкими частями, а вставка состоит из нескольких лент фольги, включенных параллельно. При коротких замыканиях нагрев перешейков происходит настолько интенсивно, что практически отводом тепла от них можно пренебречь, и одновременно перегорают все или несколько перешейков.

Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Указанное явление используется в предохранителях на небольшие токи со вставками из ряда параллельных проволок, на которые напаяны небольшие оловянные шарики. При токах перегрузки, когда температура проволок вставки достигает температуры плавления олова, шарик расплавляется и растворяет часть металла, на который он напаян. Вставка перегорает в этом месте, причем температура всей вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В нормальном режиме шарик практически не влияет на температуру нагрева вставки. Такой способ применяют при тонких проводниках вставки и малых диаметрах шариков.

При возрастании диаметра вставки влияние металлургического эффекта резко снижается.

Работа предохранителя характеризуется его время-токовой характеристикой и уровнем ограничения тока i огр.

Время-токовая характеристика (рис. 320,а) показывает, за какое время отключит ток плавкий предохранитель при данной кратности проходящего через него тока по отношению к номинальному значению, т. е. характеризует его быстродействие в определенных условиях. Так, при номинальных значениях тока (I/I ном = 1) предохранитель не срабатывает, а при больших кратностях тока К/K ном отключает цепь за малое время t откл.

Действие плавкого предохранителя поясняется рис. 320,б. Ток в защищаемой цепи ограничивается значительно меньшим значением i oгр, чем без предохранителя (показано на рисунке штриховой линией).

Отключение аварийного тока плавким предохранителем характеризуется двумя зонами: плавления и гашения дуги. Зона плавления представляет собой отрезок времени от начала нарастания аварийного тока до образования электрической дуги (интервал времени 0 - t дг). Образование электрической дуги определяет начало ограничения аварийного тока.

По мере горения электрической дуги и увеличения напряжения на ней аварийный ток ограничивается, а затем и снижается до нуля. Время горения дуги зависит от параметров аварийного контура таких, как напряжение, ток, cos ?, а также от конструкции предохранителя.

Предохранители выбирают в зависимости от напряжения установки, где они должны эксплуатироваться. Номинальный ток плавкой вставки выбирают по наибольшему току нагрузки с учетом перегрузок, которые допускает предохранитель без плавления.

Предохранители - это электрические аппараты, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство

К предохранителям предъявляются следующие требования.

    Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.

    Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением (§ 4.3).

    При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.

4. Характеристики предохранителя должны быть стабильными, а технологический разброс их параметров не должен нарушать надежность защиты.

    В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.

    Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

Нагрев плавкой вставки при длительной нагрузке

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зависимость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рисунке 5.1) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рисунке 5.1). Однако реальная характеристика предохранителя (кривая 3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается бо льше номинального тока нагрузки. При этом кривые 2 и 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (1,5 - 2) I Н 0М нагрев предохранителя протекает медленно. Большая часть тепла отдается окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая вставка сгорает при достижении ею установившейся температуры, называется пограничным током I по гр..

Рисунок 5.1. Согласование характеристик предохранителя и защищаемого объекта

Для того чтобы предохранитель не срабатывал при номинальном токе I но м, необходимо I пог р Iном, н. С другой стороны, для лучшей защиты значение I пог р должно быть возможно ближе к номинальному. При токах, близких к пограничному, температура плавкой вставки должна приближаться к температуре плавления.

В связи с тем, что время плавления вставки при пограничном токе велико (более 1 ч) и температура плавления ее материала составляет много сотен градусов Цельсия, все детали предохранителя нагреваются до высоких температур. Происходит тепловое старение плавкой вставки.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы. Материалы плавких вставок и их свойства даны в таблице 5.1.

Таблица 5.1

Удельное

Температура,

сопротивление

Примечание: θ доп - допустимая температура плавкой вставки при длительном протекании тока; θ пл - температура плавления вставки; А" и А" - коэффициенты, определяющие время плавления при КЗ. Время нагрева плавкой вставки от начальной температуры до полного ее разрушения определяется суммой коэффициентов А" + А".

Наименьшую температуру плавления имеет свинец. Но удельное со противление свинца в 12 раз выше, чем у меди, Для того чтобы при прохождении данного тока вставка нагрелась до допустимой температуры (150°С), ее сечение должно быть значительно больше, чем сечение вставки из меди.

При плавлении вставки пары металла ионизируются в возникающей дуге благодаря высокой температуре. Из-за большого объема вставки ко­личество паров металла в дуге велико, что затрудняет ее гашение и умень­шает предельный ток, отключаемый предохранителем. Из-за этих особен­ностей вставок из легкоплавких металлов широкое распространение полу­чили медные и серебряные плавкие вставки с металлургическим эффектом, который объясняется ниже. На тонкую медную проволоку (диаметром ме­нее 0,001 м) наносится шарик из олова. При нагреве вставки сначала пла­вится олово, имеющее низкую температуру плавления (232°С). В месте контакта олова с проволокой начинается растворение меди и уменьшение ее сечения. Это вызывает увеличение сопротивления и повышение потерь в этой точке. Процесс длится до тех пор, пока медная проволока не распла­вится в точке расположения оловянного шарика. Возникшая при этом дуга расплавляет проволоку на всей длине. Применение оловянного шарика снижает среднюю температуру плавления вставки до 280°С.

Отношение I погр / I ном уменьшается до 1,2, что дает улучшение время-токовой характеристики.

Стабильность времятоковой характеристики в значительной степени зависит от окисления плавкой вставки, Свинец и цинк образуют на воздухе пленку оксида, которая предохраняет вставку от изменения сечения. Мед­ная вставка при длительной работе и высокой температуре интенсивно окисляется. Пленка оксида при изменении температурного режима отслаи­вается, и сечение вставки постепенно уменьшается. В результате плавкая вставка перегорает при номинальном токе, если ее температура при токе, близком к пограничному, выбрана высокой. В таблице 5.1 приведены ре­комендуемые допустимые температуры O доп вставок при номинальном то­ке. Температура медной вставки при токе, близком к номинальному, долж­на быть значительно ниже температуры плавления. Поэтому приходится завышать сечение вставки и тем самым увеличивать отношение I пог р / I ном примерно до 1,8, что ухудшает защитные свойства предохранителя.

Серебряные плавкие вставки не подвержены тепловому старению, и для них отношение I погр / I ном определяется только нагревом.

У вставок из легкоплавких материалов эксплуатационная температура ближе к температуре плавления, что позволяет снизить отношение I пог р / I но м до 1,2-1,4.

В настоящее время в качестве материала плавкой вставки начали применять алюминий. Пленка оксида на поверхности вставки защищает алюминий от коррозии и делает характеристику предохранителя стабильной. Большее удельное сопротивление материала компенсируется увеличением сечения вставки. Алюминий имеет температуру плавления ниже, чем у меди (658 против 1083 °С).

Времятоковые характеристики предохранителей со вставками постоянного сечения из легкоплавкого металла хорошо согласуются с характеристиками силовых трансформаторов и других подобных объектов. Это объясняется низкой температурой плавления, стойкостью против коррозии и малой теплопроводностью материала таких вставок.

Медная вставка из-за высокой теплопроводности, высокой температуры плавления и большого отношения I погр / I ном в области малых перегрузок не обеспечивает защиту объекта (область А, рис. 5.1).

Нагрев плавкой вставки при коротком замыкании

Если ток, проходящий через вставку, в 3-4 раза больше номиналь­ного, то практически процесс нагрева идет адиабатически, т.е. все тепло, выделяемое плавкой вставкой, идет на ее нагрев.

Время нагрева вставки до температуры плавления

где А" - постоянная, определяемая только свойствами материала и от размера вставки не зависящая; q - поперечное сечение вставки; I к - ток, протекающий по вставке при КЗ защищаемой цепи; J к - плотность тока во вставке.

После того как температура плавкой вставки достигла температуры плавления, для перехода вставки из твердого состояния в жидкое ей необ­ходимо сообщить тепло, равное скрытой теплоте плавления.

Где р1, - удельное сопротивление материала вставки при темпера­туре плавления; р 2 - удельное сопротивление материала вставки в жид-


По мере того как часть плавкой вставки из твердого состояния пере­йдет в жидкое, ее удельное сопротивление резко увеличится (в десятки раз). Время перехода из твердого состояния в жидкое

ком состоянии; γ - плотность материала вставки; L - скрытая теплота плавления на единицу массы материала вставки.

Значения постоянных A"и A" для наиболее часто применяемых мета­ллов даны в табл. 5.1. В действительности процесс плавления идет более сложно. Как только появится жидкий участок вставки, электродинамичес­кие силы, сжимающие проводник, образуют суженные участки. В этих участках возрастает плотность тока и повышается температура. Уменьше­ние сечения вставки создает разрывающие усилия, аналогичные силам в контактах при КЗ. Таким образом, как правило, дуга загорается раньше, чем вставка полностью перейдет в жидкое состояние.

Основным параметром предохранителя при КЗ является предельный ток отключения - ток, который он может отключить при возвращающемся напряжении, равном наибольшему рабочему напряжению.

Время существования дуги зависит от конструкции предохранителя. Полное время отключения цепи предохранителем

*пр = 41 л "I ^nepei "Т" "дугп-Для предохранителя со вставкой, находящейся в воздухе,

где коэффициенты n = 3 учитывает преждевременное разрушение вставки, а k0= 1,2-1,3 учитывает длительность горения дуги.

В предохранителях с наполнителем (закрытого типа) разрушение вставки до полного ее плавления менее вероятно. Время отключения цепи предохранителем

Коэффициент k д = 1,7-2 учитывает длительность горения дуги.

Плавление вставки переменного сечения происходит в перешейках с наименьшим сечением. Процесс нагрева перешейка протекает так быстро, что тепло почти не успевает отводиться на участки повышенного сечения. Наличие перешейков уменьшенного сечения позволяет резко снизить время с момента начала КЗ до появления дуги. Процесс гашения дуги начина ется до момента достижения током КЗ установившегося или даже ампли тудного значения. Дуга образуется через время t 1 после начала КЗ, когда ток в цепи значительно меньше установившегося значения I к , уст .

Средства дугогашения позволяют погасить дугу за миллисекунды. При этом проявляется эффект токоограничения, показанный на рисунке 5.2. При отключении поврежденной цепи с токоограничением облегчается

гашение дуги, так как отключается не установившийся ток КЗ, а ток, опре­ деляемый временем плавления вставки.

Рисунок 5.2. Отключение постоянного и переменного тока предохранителем с токоограничением.

С ростом номинального тока возрастает, естественно и минимальное сечение вставки. Увеличение этого сечения приводит к возрастанию длительности плавления вставки и уменьшению эффекта токоограничения. Интенсивный отвод тепла от вставки при номинальном режиме позволяет выбрать уменьшенное сечение вставки и повысить эффект токоограничения.

Конструкция предохранителей низкого напряжения

Предохранители с гашением дуги в закрытом объеме.

Предохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4 колпачком 5, который является выходным контактом (рисунок 5.3, а). Плавкая вставка 1 штампуется из цинка, являющегося легкоплавким и стойким к коррозии материалом. Указанная форма вставки позволяет получить благоприятную времятоковую (защитную) характеристику. В предохранителях на токи более 60 А плавкая вставка 1 присоединяется к контактным ножам 2 с помощью болтов (рисунок 5.3, б).

Вставка располагается в герметичном трубчатом патроне, который состоит из фибрового цилиндра 3, латунной обоймы 4 и латунного колпачка 5.

При отключении сгорают суженные перешейки плавкой вставки, после чего возникает дуга. Под действием температуры дуги фибровые стенки патрона выделяют газ, в результате чего давление в патроне за доли полупериода поднимается до 4 -8 МПа. За счет увеличения давления поднимается вольт-амперная характеристика дуги, что способствует ее быстрому гашению.

Плавкая вставка может иметь от одного до четырех сужений (рисунок 5.3, в) в зависимости от номинального напряжения. Суженные участки вставки способствуют быстрому ее плавлению при КЗ и создают эффект токоограничения.


Рис. 5.3. Предохранитель типа ПР-2

Поскольку гашение дуги происходит очень быстро (0,002 с), можно считать, что уширенные части вставки в процессе гашения остаются неподвижными. Рассмотрим вставку с четырьмя перешейками. После их перегорания образуются четыре разрыва. На каждом катоде разрыва восстанавливается электрическая прочность около 200 В, а суммарная прочность предохранителей достигает 800 В. Это явление наряду с высоким давлением позволяет надежно гасить дугу при напряжении источника до 500 В.

Давление внутри патрона пропорционально квадрату тока в момент плавления вставки и может достигать больших значений. Поэтому фибровый цилиндр должен обладать высокой механической прочностью, для чего на его концах установлены латунные обоймы 4. Диски 6, жестко связанные с контактными ножами 2, крепятся к обойме патрона 4 с помощью колпачков 5.

Предохранители работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстоянии друг от друга.

Предохранители выпускаются двух осевых размеров - короткие и длинные. Короткие предназначены для работы на переменном напряжении, не выше 380 В. Они имеют меньшую отключающую способность, чем длинные, рассчитанные на работу в сети с напряжением до 500 В.

В зависимости от номинального тока выпускается шесть габаритов патронов различных диаметров. В патроне каждого габарита могут устанавливаться вставки на различные номинальные токи. Так, в патроне на номинальный ток 15 А могут быть установлены вставки на ток 6, 10 и 15 А.

В таблице 5.2 приведены значения испытательных токов для предохранителя типа ПР-2.

Таблица 5.2

Номинальный

Длительность про-

Кратность испытательного тока

ток вставки, А

хождения испыта-

по отношению к

: номинальному

тельного тока, ч

Нижнее значение

Верхнее значе-

Различают нижнее и верхнее значения испытательного тока. Нижнее значение испытательного тока - это максимальный ток, который, протекая в течение 1 ч, не приводит к перегоранию предохранителя. Верхнее значение испытательного тока - это минимальный ток, который, проходя в течение 1 ч, плавит вставку предохранителя. С достаточной точностью можно принять пограничный ток равным среднеарифметическому испытательных токов.

Предохранители типа ПР-2 обладают токоограничением. Так, в цепи с током КЗ 50 000 А плавкая вставка на номинальный ток 6 А перегорает при токе всего 400 А. Однако чем больше номинальный ток, тем меньше эффект токоограничения. При номинальном токе 600 А токоограничение отсутствует, так как дуга горит весь полупериод.

Предохранители с мелкозернистым наполнителем.



Рисунок 5.4. Предохранитель типа ПН-2.


Эти предохранители более совершенны, чем предохранители ПР-2. Корпус квадратного сечения 1 предохранителя типа ПН-2 (рисунок 5.4) изготавливается из прочного фарфора или стеатита. Внутри корпуса расположены ленточные плавкие вставки 2 ц наполнитель - кварцевый песок 3, Плавкие вставки привариваются к диску 4, который крепится к пластинам 5, связанным с ножевыми контактами 9. Пластины 5 крепятся к корпусу винтами.

В качестве наполнителя используется кварцевый песок с содержанием SiO2 не менее 98 %, с зернами размером (0,2-0,4) 10- 3 м и влажностьюне выше 3 %. Перед засыпкой песок тщательно просушивается при температуре 120-180 °С. Зерна кварцевого песка имеют высокую теплопроводность и хорошо развитую охлаждающую поверхность.

Плавкая вставка выполняется из медной ленты толщиной 0,1- 0,2мм. Для получения токоограничения вставка имеет суженные сечения 8.Плавкая вставка разделена на три параллельных ветви для более полного использования наполнителя. Применение тонкой ленты, эффективный теплоотвод от суженных участков позволяют выбрать небольшое минимальное сечение вставки для данного номинального тока, что обеспечивает высокую токоограничивающую способность. Соединение нескольких суженных участков последовательно способствует замедлению роста тока после плавления вставки, так как возрастает напряжение на дуге предохранителя. Для снижения температуры плавления на вставки наносятся оловянные полоски 7 (металлургический эффект).

При КЗ плавкая вставка сгорает и дуга горит в канале, образованном зернами наполнителя. Из-за горения в узкой щели при токах выше 100 А дуга имеет возрастающую вольт-амперную характеристику. Градиент напряжения на дуге очень высок н достигает (2-6) 10 4 В/м. Этим обеспечивается гашение дуги за несколько миллисекунд.

После срабатывания предохранителя плавкие вставки вместе с диском 4 заменяются, после чего патрон засыпается песком. Для герметизации патрона под пластины 5 кладется асбестовая прокладка 6, что предохраняет песок от увлажнения. При номинальном токе 40 А и ниже предохранитель имеет более простую конструкцию.

Предохранители ПН-2 выпускаются на номинальный ток до 630 А. Предельный отключаемый ток КЗ, который может отключаться предохранителем, достигает 50 кА (действующее значение тока металлического КЗ сети, в которой устанавливается предохранитель).

Малые габариты, незначительная затрата дефицитных материалов, высокая токоограничивающая способность являются достоинствами этого предохранителя.

В малогабаритных распределительных устройствах применяются резьбовые предохранители типа ПРС (рисунок 5.5, а). Один конец цепи подводится к контакту 1, который связан с контактной гильзой 2, соединенной резьбой с контактом съемной головки 3. Плавкая вставка 4 располагается в фарфоровом цилиндре 5, заполненном кварцевым песком. На торцах цилиндра 5 укреплены контактные колпачки, с которыми соединена плавкая вставка 4. Второй конец цепи через контакт 7 соединяется с контактным винтом 8. Предохранитель имеет указатель срабатывания. При сгорании плавкой вставки освобождается специальная пружина, которая выбрасывает глазок в застекленное отверстие 6. После срабатывания предохранителя заменяется цилиндр 5 со сгоревшей плавкой вставкой и сигнализирующим устройством.


Рисунок 5.5. Предохранитель типа ПРС (а), жидкометаллический предохранитель (б).

Предохранители этого типа выпускаются на токи до 100 А, напряжение до 440 В постоянного тока и до 500 В переменного тока частотой 50 Гц. Предельно отключаемый ток составляет 60 кА.

Эти предохранители более сложны в производстве и более дороги, чем предохранители ПН-2. Поэтому их применение целесообразно при малых габаритах распределительного устройства и ограниченном времени обслуживания (после сгорания плавкой вставки).

Предохранители с жидкометаллическим контактом.

В таком предохранителе (рис. 5.5, б) электроизоляционная трубка имеет капилляр, заполненный жидким металлом 2. Капилляр с жидким металлом герметично закрыт электродами 3, 4 и корпусом 5 с уплотнением 6 и имеет специальное демпфирующее устройство 7, 8. При протекании большого тока жидкий металл в нем испаряется, образуется паровая пробка и электрическая цепь размыкается. После определенного времени пары металла конденсируются и контакт восстанавливается. Предельный отключаемый ток таких предохранителей достигает 250 кА при напряжении 450 В переменного тока. Предохранители работают многократно с большим токоограничением.

Быстродействующие предохранители для защиты полупроводниковых приборов.

Малая тепловая инерция, быстрый прогрев полупроводникового пе рехода крайне затрудняют защиту мощных диодов, тиристоров и транзисторов при токовых перегрузках. Обычные типы предохранителей и авто матических выключателей из-за относительно большого времени срабаты вания не обеспечивают защиту полупроводниковых приборов при КЗ. Для выполнения этой задачи разработаны специальные быстродействующие предохранители.

При времени протекания тока t<0,02с можно считать, что процесс нагрева прибора протекает по адиабатическому закону. Для удобства согласования характеристик прибора и предохранителя вводится понятие интеграла Джоуля, где t - длительность протекания тока через

Для эффективной защиты необходимо, чтобы полный джоулев инте­грал предохранителя был меньше джоулева интеграла защищаемого при­бора. Джоулев интеграл предохранителя состоит из джоулева интеграла нагрева до температуры плавления вставки G^ и джоулева интеграла га­шения образовавшейся дуги G гаш. С целью сокращения первой составляю­щей предохранитель должен работать с большим токоограничением. Для достижения этой цели плавкая вставка выполняется из серебра, имеет пе решеек с минимальным сечением и охлаждается кварцевым наполнителем.

С целью улучшения охлаждения при больших номинальных токах плавкая вставка выполняется из ленты толщиной 0,05-0,2 мм. При боль ших точках вставка имеет несколько параллельных ветвей. Помогает также заполнение кварцевым песком под большим давлением. В некоторых слу чаях для дальнейшего уменьшения перешейка предохранитель имеет ис кусственное водяное охлаждение.

Для уменьшения времени горения дуги плавкая вставка имеет боль шое число перешейков. После плавления вставки образуется ряд последо вательно включенных дуг, благодаря чему вольт-амперная характеристика предохранителя поднимается. Число перешейков ограничивается перенап ряжением, которое возникает при отключении цепи.

При постоянном токе гашение дуги осложняется тем, что ток не про ходит через нуль и вся электромагнитная энергия отключаемой цепи рассеивается в предохранителе. Решающим фактором при постоянном токе является постоянная времени цепи Т= L / R .. С увеличением постоянной времени Т условия работы предохранителя утяжеляются. Необходимо выбирать предохранитель на более высокое номинальное напряжение, чем при переменном токе. Время плавления вставки при постоянном токе

при переменном токе

где Б - постоянная, зависящая от удельной теплоты плавления и ис­парения материала. Для серебра Б=8 · 10 4 А 2 ·с/мм 4 , для меди Б=10 5 А 2 ·с/мм 4 , для алюминия Б=3,4 · 10 4 А 2 ·с/мм 4 , q 0 -сечение перешейка, мм 2 ; Т - постоянная времени цепи, с; I к , уст - установившееся значение тока КЗ цепи.

При ƒ≥50 Гц и T≥2 мс время плавления на постоянном токе больше, чем на переменном. Максимальный пропускаемый предохранителем по­стоянный ток

Обычно предохранители рассчитывают для работы в цепях с постоянной времени T≤35 мс.

Конструктивно быстродействующий предохранитель представляет собой корпус из прочного фарфора, внутри которого расположены плавкие вставки и кварцевый песок. Контакты укрепляются к корпусу винтами и могут иметь различное исполнение.

В современных преобразовательных установках каждый полупрово дниковый прибор имеет предохранитель. Токи, протекающие через предохранитель, могут достигать 100-200 кА. При разрушении предохранителя может произойти авария преобразовательной установки. В связи с этим быстродействующие предохранители должны иметь большую механичес кую прочность и обладать высокой надежностью.

В СССР Выпускается серия быстродействующих предохранителей ПП-57 на номинальные токи 40-800 А и готовится к выпуску серия ПП- 59 на номинальные токи 250-2000 А. Номинальные напряжения состав ляют до 1250В переменного и до 1050В постоянного тока. Предохранитель ПП-59 на ток 400 А и напряжение 660 В имеет джоулев интеграл отключе ния 320·10 3 А 2 -с.

Быстродействующие предохранители предназначены только для за щиты от КЗ. Защита от перегрузок должна выполняться другими аппара тами.

Cтраница 1


Плавкий предохранитель состоит из двух основных частей: корпуса (патрона) из электроизоляционного материала и плавкой вставки. Концы плавкой вставки соединены с клеммами, с помощью которых предохранитель включается в линию последовательно с защищаемым потребителем или участком цепи. Плавкая вставка выбирается с таким расчетом, чтобы она плавилась раньше, чем температура проводов линии достигнет опасного уровня или перегруженный потребитель выйдет из строя.  

Плавкие предохранители служат для защиты всей электрической сети крана от коротких замыканий. Принцип действия предохранителей основан на расплавлении их плавких элементов при резком возрастании силы тока в цепи.  

Плавкие предохранители выпускают трех типов: пробочные, рассчитанные на силу тока до 60 А, трубчатые СПО - до 360 А и пластинчатые-до 600 А.  

Плавкие предохранители предназначены для защиты электрооборудования и электрических сетей от больших токов, возникающих при коротких замыканиях, и значительных (50 % и более) перегрузках. В предохранителе помещается проводник с низкой температурой плавления (плавкая вставка), через который проходит ток защищаемой цепи. При увеличении тока выделяется большое количество тепла, под действием которого проводник расплавляется и размыкает цепь. На башенных кранах применяют трубчатые предохранители без наполнения ПР-2 и с наполнением ПН2, НПР, НПН.  

Плавкий предохранитель - тепловой, разрывного действия служит для разрыва электрической цепи при перегрузках.  

Плавкие предохранители не могут защищать двигатель от небольших и длительных перегрузок. Только при внезапных больших перегрузках или коротких замыканиях предох-раяители могут быстро отключать двигатели. Автоматы размыкают электрические цепи при перегрузке или коротких замыканиях. Для защиты двигателей от перегрузок (но не от коротких замыканий) используют тепловые реле, которые выбираются по номинальному току двигателя.  


Плавкие предохранители используют в лифтах для защиты слаботочных цепей управления, сигнализации и освещения от токов короткого замыкания. Состоит предохранитель из трех основных частей: корпуса, контактного устройства и металлической плавкой вставки. Предохранитель типа ПР (рис. 87) включает в себя фибровый корпус 4, обоймы 2, плавкую вставку 3 и контакты /, которые одновременно служат и для крепления предохранителя к токоподводящим выводам. При коротком замыкании предохраняемой цепи плавкая вставка сгорает и цепь разрывается. Под действием высокой температуры фибра разлагается и выделяет газ, способствующий гашению дуги, которая возникает при разрыве цепи. Наиболее распространены также предохранители пробочные и с кварцевым заполнителем.  

Плавкие предохранители защищают электродвигатели и прочие промышленные устройства только от токов короткого замыкания, а от длительных перегрузок они надежно защитить не могут. Поэтому в мощных электротехнических установках кроме плавки предохранителей устанавливается автоматическая защита.  


Плавкие предохранители очень просты и дешевы. Однако они обладают существенными недостатками. Так будет продолжаться до тех пор, пока кривые не сблизятся.  

Плавкий предохранитель должен отключать место повреждения от неповрежденных элементов установки. Необходимо стремиться к тому, чтобы при сгорании плавкой вставки заполнитель вступал в химическое соединение с парами плавкой вставки и при этом выделялось как можно больше газов, деионизирующих дуговое пространство и облегчающих процесс разрыва дуги.  

Плавкий предохранитель представляет собой аппарат, служащий для защиты электрических цепей от токов короткого замыкания и чрезмерных токов нагрузки. При повышении тока нагрузки выше установленного значения предохранитель автоматически отключает цепь.  

Плавкие предохранители применяют для защиты электрических сетей от коротких замыканий, а в некоторых случаях и от перегрузок. В сетях напряжением до 1000 в плавкие предохранители являются основным видом защиты. В сетях более высокого напряжения (до 110 кв) их применяют во всех случаях, когда они удовлетворяют требованиям, предъявляемым к защите.  

Плавкий предохранитель состоит из плавкой вставки, представляющей собой металлический проводник уменьшенного сечения, патрона или конструкции, в которой закрепляется плавкая вставка, и иногда устройства, облегчающего гашение дуги.  

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и .

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

1. величина протекающего тока нагрузки;

2. продолжительность его воздействия.

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время-токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Времятоковые характеристики (ВТХ) выражают графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

    технические возможности;

    условия проверок;

    назначение.

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

1. рабочую область, в которой плавкая вставка остается целой и надежно обеспечивает протекание тока по защищаемой схеме;

2. зону протекания токов предельного отключения, в которой происходит разрыв электрической цепи.

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

1. номинальным, который она способна выдерживать практически неограниченное время;

2. минимальным испытательным, под действием которого может проработать более одного часа;

3. максимальным испытательным, которое вызывает ее перегорание менее чем за один час.

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

1. перегрузов повышенными нагрузками, которые отключаются с задержкой;

2. коротких замыканий — КЗ, требующих максимально быстрой ликвидации.

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

    величину рабочего напряжения схемы, в которой должен работать предохранитель;

    предельный отключаемый ток у плавкой вставки, способный ее разорвать (отключить);

    значение номинального тока предохранителя с учетом коэффициентов его нагрузки и отстройки от перегрузок.

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Как работает времятоковая характеристика у автоматического выключателя

На выбор время-токовой характеристики оказывают влияние:

    конструктивные особенности встроенных защит;

    конфигурация выбранного графика.

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

1. тепловой нагрузки;

2. электромагнитного воздействия.

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время-токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время-токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Основные параметры графика времятоковой характеристики

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

1. верхней, учитывающей срабатывание защит непосредственно из холодного состояния +30 О С;

2. нижней, созданной после повторного включения, когда конструкция автомата не успела остыть.

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время-

токовой характеристики для выделения эксплуатационных областей: внутри первой должно обеспечиваться надежное протекание рабочих токов, а во второй — происходить отключения аварийных режимов.

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

    меньшее, чем 1 час, если его номинал до 63 ампер;

    не дольше двух часов, когда номинальный ток превышает эту величину в 63 ампера.

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Практическое применение параметров ВТХ

Анализ использования время-токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время-токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.


Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время-токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Типы времятоковых характеристик автоматических выключателей



Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования.

Автоматические выключатели выпускаются для бытового или промышленного использования.


Бытовые автоматы классифицируют тремя группами В, С и D:

1. класс В предназначен для защиты протяженных линий и систем освещения. Кратность токов для его срабатывания лежит в пределах 3÷5 Iном;

2. класс С защищает розеточные группы или оборудование, создающее умеренные пусковые токи. Кратность токов 5÷10 Iном;

3. класс D применяют для защиты потребителей, обладающих повышенными пусковыми токами, например, трансформаторов или станков с мощными асинхронными электродвигателями. Кратность токов 10÷20 Iном.

Автоматические выключатели типа В являются более чувствительными. Ими принято защищать оконечные потребители внутри квартир и домов. А в качестве вводного автомата лучше устанавливать те, которые относятся к типу С.

Качество состояния электропроводки и величина сопротивления петли фаза-ноль может влиять на выбор автоматического выключателя. Старая изоляция с высоким содержанием токов утечек и завышенными показателями петли способны ухудшить условия срабатывании автомата типа С или привезти к его отказу. В таких ситуациях применяют класс В.

Промышленные автоматы классифицируют тремя группами:

1. класс L — более 8 Iном;

2. класс Z — более 4 Iном;

3. класс K — более 12 Iном.

Среди производителей стран Европы встречаются модели автоматов с классом А, который имеет границу кратности токов 2÷3 Iном.

Все эти особенности необходимо учитывать при выборе конструкции автоматического выключателя и его проверках. Автоматы, обозначенные одним и тем же номиналом, в зависимости от типа время-токовой характеристики, обладают разными временами срабатывания.