Трехвыводные стабилизаторы напряжения. Схема подключения стабилизатора L7805CV, описание характеристик

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.


В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.


Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.



Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.




Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.


Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.




Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

Блок питания своими руками можно собрать довольно быстро и просто из дешевых и широко распространённых деталей. Он является неотъемлемой частью любого электронного устройства. Без электричества не сможет функционировать ни один компьютер, приемник, мобильный телефон, планшет и т. п. Всем электронным устройствам нужны электроны, источниками которых и являются различные блоки питания.

Начинающему радиолюбителю и электронщику в качестве первой своей самоделки следует собрать именно блок питания. А потом создавать другие устройства, которые будут питаться от уже имеющегося источника, причем выполненного собственноручно.

Различают импульсные блоки питания, еще их называют безтрансформаторные, и трансформаторные. В этой статье мы будем собирать только последние. Здесь лишь заметим, что основным преимуществом импульсных является их значительная мощность при малых габаритах и массе, т. е. высокая удельная мощность, а к недостатку относится сильные электромагнитные помехи, вызваны самой структурой таких блоков питания, поэтому их обязательно нужно экранировать. По этой причине в аудиотехнике высокого класса применяются исключительно трансформаторные источники питания.

Практически все современные электронные устройства выполнены на микросхемах их (или) транзисторах, для питания которых необходимо постоянное напряжение величиной 5, 9 и 12 В. Хотя последним временем осуществляется переход микросхем на питание от 3,3 В. Поскольку напряжение в сети (в розетке) переменное 220 В, 50 Гц, то назначением любого блока питания (БП) есть понижение и преобразование переменного напряжения в постоянное (рис. 1 ). Кроме того выходное напряжение должно быть стабильным, то есть всегда оставаться определенной величины независимо от колебаний входного напряжения.

Рис. 1 – Функциональная схема блока питания

Структура БП включает в себя трансформатора, выпрямитель, фильтра и стабилизатора напряжения или, гораздо реже, стабилизатор тока (рис. 2 ). Также может использоваться светодиод или вольтметр для индикации наличия напряжения.

Рис. 2 – Структура блока питания

Рассмотрим кратко назначение основных элементов БП.

Трансформатор. Назначение

Трансформатор применяется для понижения переменного сетевого напряжения 220 В, частотой 50 Гц до нужной величины, требуемой для питания различных электронный устройств. Также он служит для гальванической развязки высоковольтных цепей с низковольтными, то есть, чтобы напряжение 220 В не попало на микросхемы, транзисторы и другие электронные элементы, которые питаются низким напряжением и не повредили их. Конструктивно трансформатор состоит из одной первичной и одной или более вторичных обмоток (рис. 3 ), которые намотаны на магнитопровод, набранный из тонких стальных пластинок, разделенных нетокопроводящим слоем.


Рис. 3 – Схематическое изображение трансформатора

Когда к первичной обмотке подключен источник переменного напряжения, то в ней, поскольку цепь замкнута, протекает переменный ток. Он, в свою очередь, вызывает магнитное поле, которое также является переменным. Оно будет концентрироваться в сердечнике и протекать по нему в виде магнитного потока. Это поток при пересечении вторичной обмотки наводит в ее витках электродвижущую силу (ЭДС), которая называется ЭДС самоиндукции. Она, помимо прочего, прямопропорциональна количеству витков обмотки. Чем большее количество витков, тем выше значение ЭДС.

Магнитопроводы всех типов трансформаторов разделяют на тороидальные и стержневые (рис. 4 ). На практике удобнее применять тороидальные трансформаторы, так как на их магнитопровод легко намотать нужное количество витков и соответственно получить нужное напряжение.


Рис. 4 – Тороидальный и стержневой трансформатор броневого типа

Для нашем блоке питания нужно применять трансформатор с номинальным током вторичной обмотки не менее 1 А. Меньше не имеет смысла, поскольку мощность БП будет слишком мала. Напряжение вторичной обмотки нужно выбирать исходя из выходного напряжения блока питания. Если оно равно 5 В, то и на обмотке должно быль 5 В, если 12 В – то 12 В и так далее.

Выпрямитель полупроводниковый

Для того, чтобы получить из переменного напряжения постоянного применяют выпрямитель. Напряжение после выпрямителя правильно называть не постоянным, а выпрямленным. В преимущественном большинстве применяется выпрямитель, состоящий из четырех диодов. А схема выпрямления называется мостовой. Принцип действия заключается в следующем. В один полупериод (рис. 5 ) ток во вторичной обмотке протекает в направлении снизу в верх (см. рис. 5 ) и через открытую пару диодов VD1, VD2 и нагрузку в виде светодиода VD5 с последовательно соединенным резистором R5 протекает выпрямленный ток.


Рис. 5 – Работа выпрямителя в первый полупериод

Во второй полупериод ток вторичной обмотки трансформатора протекает в обратном направлении – с верху в низ (рис. 6 ). Теперь открыты диоды VD3, VD4, а диоды VD1, VD2 закрыты. Ток через нагрузку протекает в том же направлении (см. рис. 6 ).


Рис. 6 – Работа выпрямителя во второй полупериод

Выпрямитель можно взять готовый или спаять самому из четырех диодов. Готовый выпрямитель имеет 4 вывода. К двум из них подводится переменное напряжение (такие выводы обозначаются знаком «~»), а с двух остальных снимается постоянное напряжение. Один обозначается знаком плюс «+», а второй знаком минус «-». Определить выводы можно с помощью маркировки, которая наносится на корпус, а также по длине выводов: наиболее длинный вывод – это «+», чуть короче – «минус», два наиболее коротких вывода одинаковой длинны – это выводы для подключения переменного напряжения (рис. 7 ).


Рис. 7 – Мостовой выпрямитель. Внешний вид

Фильтр

После выпрямителя напряжение получается не идеально постоянным, а пульсирующим. Для сглаживание этих пульсаций необходимо применять фильтр (рис. 8 ). Наиболее простой фильтр состоит всего лишь из электролитического конденсатора большой емкости (рис. 9 ). Такой фильтр наш блок питания вполне устроит. Поскольку напряжения на входе конденсатора имеет пульсирующий характер, то в нем присутствуют пики и спады, то есть напряжение нарастает и спадает. В момент нарастания напряжения конденсатор заряжается, а в момент спада он разряжается на нагрузку. В результате этого напряжение на нагрузке остается практически постоянным.


Рис. 8 – Схема подключения конденсатора в качестве фильтра


Рис. 9 – Электролитические конденсаторы фильтра

Стабилизаторы напряжения. LM 7805. LM 7809. LM 7809. LM 7812

Напряжение в сети не всегда равно 220 В, а колеблится в некоторых допустимых, а иногда и недопустимых пределах. Соответственно напряжение и на выходе блока питания будет колебаться, что недопустимо для большинства электронных устройств. Поэтому на выходе выпрямителя после фильтра необходимо стабилизировать напряжение. Для это устанавливаются либо стабилитроны либо интегральные стабилизаторы напряжения .

Наиболее широкое распространение получили стабилизаторы напряжения серии LM 78 XX и LM 79 XX , где буквы LM обозначают производителя, также могут использоваться буквы CM , однако важными являются 4-ри цифры, стоящие за буквами. Первые две цифры указывают полярность выходного напряжения стабилизатора: 78 – положительное напряжение, 79 – отрицательное напряжение. Далее мы рассмотрим их схемы. Вторые две цифры в маркировке стабилизаторов ХХ (рис. 10 ) обозначают величину выходного напряжения, например 05 – 5 В; 08 – 8 В; 12 – 12 В и т. д. Теперь расшифруем несколько стабилизаторов целиком. LM 7805 – это стабилизатор с положительным LM 7908 – стабилизатор с отрицательным выходным напряжением, величиной 5 В; LM 7812 – 12 В, положительное напряжение.


Рис. 10 – Стабилизаторы напряжения: LM 7805, LM 7808, LM 7809

Такие стабилизаторы имеют три вывода: вход, общий и выход. Обозначение выводов показано на рис. 11 .

Рассмотренный тип стабилизаторов напряжения рассчитан на ток 1 А. При протекании такого тока он сильно нагревается, поэтому его нужно устанавливать на радиатор, для этого оно имеет корпус с металлической пластиной и отверстием под установку радиатора.

Рис. 11 – Обозначение выводов стабилизатора напряжения LM 7805

Схема блока питания состоит из трансформатора, четырех диодов, включенных по мостовой схеме, или готового мостового выпрямителя, стабилизатора напряжения и светодиодного индикатора работы блока питания.


Рис. 12 – Схема блока питания

Трансформатор необходимо выбирать исходя из таких соображений, чтобы величина напряжения вторичной обмотки была такой, что после выпрямления и сглаживания, напряжение на входе стабилизатора напряжение было на 2…3 В больше чем на его выходе. Например, нам нужен блок питания на 5 В, тогда мы будем применять стабилизатор напряжения LM7805. Для нормальной работы его напряжение на входе должно быть 7…8 В. Если напряжение будет меньше, то стабилизатор будет работа крайне нестабильно, то есть напряжение на его выходе будет колебаться и он ничего не буде стабилизировать.

Если на вход стабилизатора LM7805 подать напряжение 25 В, то он будет выдавать стабильное напряжение 5 В. Но здесь возникает другая неприятность. Оставшихся 20 В будут гасится на внутреннем сопротивлении стабилизатора и при протекании значительного тока он буде слишком сильно перегреваться. Поэтому не рекомендуется подавать на вход стабилизатора слишком большое напряжение относительно его выходного напряжения. Оптимум является на 2…3 В больше.

Что касается тока, то, как было упомянуто, номинальный ток стабилизатора 1 А, поэтому все элементы блока питания должны выдерживать ток не менее 1 А. Главным образом это касается выпрямителей (либо отдельных диодов) и вторичной обмотки трансформатора (и соответственно первичной с учетом коэффициента трансформации).

Взглянем еще раз на схему блока питания, приведенную на рис. 12 . Вход и выход стабилизатора зашунтированы неполярными конденсаторами малой емкости 0,33 мкФ и 0,1 мкФ соответственно. Их установка рекомендуется производителем для поглощения и защиты от высокочастотных помех. Хотя в 99 % случаях можно обойтись и без этих конденсаторов.

Продолжаем собирать блок питания своими руками

Если необходимо иметь стабилизированный источник напряжения непосредственно на сомом устройстве либо нужен блок питания малой мощности, тогда применяют рассмотренную выше схему (рис. 12 ), но применяют стабилизаторы напряжения серии 78 L 05, 78 L 12, 79 L 05, 79 L 08 и так далее. Внешне они похожи на транзисторы и также имеют три вывода (рис. 13 ). Номинальный ток их 100 мА, поэтому они не нуждаются в установке радиатора и находятся в таком компактном корпусе.

Рис. 13 – Стабилизатор напряжения 78 L 05

Расшифровка маркировки их выполняется точно также, как и рассмотренных выше, только пары цифр разделены буквой L . Первая пара цифр обозначает: 78 – положительное, 79 – отрицательное напряжение. Вторая пара цифр: 05 – 5 В, 08 – 8В, 09 – 9 В, 12 – 12 В и т. д.

Обратите внимание, что рассмотренные типы стабилизаторов отличаются маркировкой выводов (рис. 14 ).


Рис. 14 – Стабилизаторы напряжения LM 7805 и 78 L 05

Схема включения 78L05

Схема включения 78L05 приведена на рис. 15 . Точно по такой же схеме включаются и другие стабилизаторы положительного напряжения серии 78 L ХХ и LM 78ХХ .


Рис. 15 – Схема включения стабилизаторов напряжения 78 L ХХ и LM 78ХХ

Схема включения 79L 05

Схема включения стабилизаторов отрицательного напряжения серии 79 L ХХ и LM 79ХХ показана на рис. 16 . Хотя они используются не часто, но все же нужно знать о их существовании и уметь применять на практике.


Рис. 16 – Схема включения 79 L ХХ и LM 79ХХ

Теперь, я надеюсь, Вы сможете собрать блок питания своими руками на любое напряжение. А главное, научились применять на практике любые стабилизаторы напряжения и увидели, что здесь нет ничего сложного. В следующей статье мы научимся собирать такие же простые блоки питания, но с возможностью плавной регулировки выходного напряжения.

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А - это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или , LM1117 , LM350 .

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.


Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов - сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы - лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные - всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим - ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно .

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор - маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.


Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из , для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания - 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор - простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус - чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в о этом приборе) . Тепловыделение растёт, КПД падает.

Тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока - хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:


78L05 это наверное самый распространенный стабилизатор напряжения на 5 Вольт. Маломощный аналог 7805.

Практически каждая мировая фирма производящая интегральные схемы выпустила аналог этой микросхемы, обычно первые две буквы предваряющие обозначение 78L05 указывают на фирму, например: LM78L05, TS78L05, KA78L05.

Конечно в любом случае, чтобы узнать параметры и цоколевку корпуса микросхемы лучше прочитать официальный datasheet. Но вот что мне не нравиться в официальной документации, что цоколевка приведена ненаглядно, и когда что-то чинишь или настраиваешь приходиться смотреть сразу на две картинки: соответствия названия и номера вывода и расположение номера вывода на самом корпусе.
То что в этой микросхеме первый вывод является выходом, а последний — входом пару раз меня сбивало с толку и я неправильно разводил плату. Дабы в дальнейшем избежать подобных казусов, я пририсовал название выводов прямо на рисунки корпусов в исполнениях SO-8, SOT-89, TO-92.

Проще схем наверное не бывает: сам стабилизатор и два конденсатора. Чтобы стабилизатор работал правильно (нормально стабилизировал и не генерировал пульсации) стабилизатора на вход и выход необходимо подключить конденсаторы. Причем их номиналы не должны быть меньше 0,33 мкФ и 0,1 мкФ соответственно.



Если стабилизатор питается выпрямленным напряжением частотой 50Гц, то входной конденсатор приходиться увеличивать, ставить электролитический у которого не маленькое последовательное сопротивление. Поэтому в данном случае к электролитическому конденсатору в параллель нужно поставить керамический.

78L05 характеристики

  • Выходное напряжение +5 В.
  • Выходной ток 0,1 А.
  • Рекомендуемое напряжение на входе от +7 до + 20 В.
  • Рекомендуемый температурный диапазон от 0 до 125 градусов Цельсия.

Стабилизатор 78L05 лишь один из большого семейства.
Для стабилизации отрицательного напряжения -5 В можно использовать аналогичный стабилизатор 79L05.
То есть вторая цифра 8 означает положительное напряжение стабилизации, а цифра 9 — отрицательное.
Следующая буква «L» как раз обозначает ток 0,1 А, есть модификации с буквой «M» на пол ампера и вообще без буквы 7805 — на 1 А.
А последние две цифры определяют выходное напряжение, кроме 5 В, выпускаются стабилизаторы на 6, 8, 9, 10, 12, 15, 18 и 24В.

Отечественные аналоги

Существуют и отечественные аналоги этой серии микросхем — КР1157ЕНхх, КР1181ЕНхх. Таким образом 5 В стабилизатор 78L05 имеет аналоги КР1157ЕН5, КР1181ЕН5.
Серия КР1181 выполнена в корпусе TO-92, а КР1157ЕН5 в более мощном корпусе допускающем установку на радиатор и поэтому способная отдавать ток до 250 мА.

Для более мощных стабилизаторов также существуют аналоги: одно амперные микросхемы в металло-керамическом корпусе с позолоченными выводами серии 142ЕНхх, и серия КР142ЕНхх в пластиковых корпусах КТ-28-2 (TO-220).

У 500 мА стабилизаторов тоже есть отечественные аналогии — серия КР1332ЕНхх.

Еще стоит обратить внимание, что даже если на выходе 75L05 не будет нагрузки, стабилизатор все равно будет потреблять ток, причем для приборов с батарейным питанием вполне приличный — до 5 мА.

Широкое применение в электронике нашли интегральные стабилизаторы напряжения и особенно один их вид - стабилизаторы с фиксированным выходным напряжением в трехвыводных корпусах. Они хороши тем что не требуют внешних элементов (кроме конденсаторов фильтров), регулировок и имеют широкий диапазон токов в нагрузках. Не буду приводить здесь их технические характеристики, а приведу только основные данные и схемы возможного применения.

Стандартные линейные стабилизаторы выпускаются многими производителями и имеют не одно обозначение, мы рассмотрим их на примере наиболее характерного типа:

  • серия L78 (для положительных напряжений ),
  • и серия L79 (для отрицательныхнапряжений ).

В свою очередь стандартные регуляторы делятся на:

  • слаботочные с выходным током в районе 0,1 А (L78Lхх) - вид на рис. 1а,
  • со средним значением тока порядка 0,5 А (L78Мхх) - вид на рис. 1б,
  • сильноточные 1...1,5 А (L78хх) - вид на --рис.1в.

Невысокая стоимость, простота применения и большое разнообразие выходных напряжений и корпусов делают эти компоненты весьма популярными при создании простых схем электропитания. Надо отметить, что эти регуляторы обладают рядом дополнительных функций, обеспечивающих безопасность функционирования. К ним относятся защита от перегрузки по току и температурная защита от перегрева микросхемы.

Рисунок 1

Интегральные стабилизаторы используют корпуса типов: КТ-26 , КТ-27, КТ-28-2, ТО-220,
КТ-28-2, КТ-27-2, ТО-92, ТО-126, ТО-202, которые близки к изображенным на рис.1.

Микросхемы серии 78xx

Это серия ИМС линейных стабилизаторов с фиксированным выходным напряжением - 78xx (также известная как LM78xx).

Их популярность связана, как уже говорилось выше, с их простотой использования и относительной дешевизной. При указании определённых микросхем серии, "xx" заменяется на двухзначный номер, обозначающий выходное напряжение стабилизатора (к примеру, микросхема 7805 имеет выходное напряжение в 5 вольт, а 7812 - 12В). Стабилизаторы 78-ой серии имеют положительное относительно земли рабочее напряжение, а серия 79xx отрицательное, имеет аналогичную систему обозначений. Их можно использовать для обеспечения и положительного, и отрицательного напряжений питания нагрузок в одной схеме.

Кроме того, их популярность серии продиктована несколькими преимуществами перед другими стабилизаторами напряжения:

  • Микросхемы серии не нуждаются в дополнительных элементах для обеспечения стабильного питания, что делает их удобными в использовании, экономичными и эффективно использующими место на печатной плате. В отличие от них большинство других стабилизаторов требуют дополнительные компоненты или для установки нужного значения напряжения, или для помощи в стабилизации. Некоторые другие варианты (например, импульсные стабилизаторы) требуют не только большого количества дополнительных компонентов, но могут требовать большой опыт разработки.
  • Устройства серии обладают защитой от превышения максимального тока, а также от перегрева и коротких замыканий, что обеспечивает высокую надёжность в большинстве случаев. Иногда ограничение тока также используется и для защиты других компонентов схемы,
  • Линейные стабилизаторы не создают ВЧ помех, в виде магнитных полей рассеяния и ВЧ пульсаций выходного напряжения.

К недостаткам линейных стабилизаторов можно отнести более низкий КПД по сравнению с импульсными, но при оптимальном расчете он может превышать 60%.

Структура интегрального стабилизатора показана на рис. 2



Рисунок 2

Требование к применению стабилизаторов:

    падение напряжения на нем не должно быть ниже 2 вольт,

    максимальный ток через него, не должен превышать указанного в соотношении:

I max < P/U in-out

P - допустимая мощность рассеяния микросхемы, U in-out - падение напряжения на микросхеме (U in-out = U in - U out ).

Типовая схема включения стабилизатора напряжения в техвыводном корпусе
с фиксированным выходным напряжением

Типовая схема включения интегрального стабилизатора напряжения в трехвыводном корпусе с фиксированным выходным напряжением показана на рис. 3.



Рисунок 3

Мы видим, микросхемы подобного типа не требуют дополнительных элементов, кроме конденсаторов фильтрующих напряжение - которые фильтруют питающее напряжение и защищают стабилизатор от помех проникающих с нагрузки и от источника питающего напряжения.

Для обеспечения устойчивой работы микросхем серии 78хх во всем диапазоне допустимых значений входных и выходных напряжений и токов нагрузки рекомендуется применять шунтирующие вход и выход стабилизатора конденсаторы. Это должны быть твердотельные (керамические или танталловые) конденсаторы емкостью до 2 мкф на входе и 1 мкф на выходе. При использовании алюминиевых конденсаторов их емкость должна быть более 10 мкф. Подключать конденсаторы необходимо как можно более короткими проводниками как можно ближе к выводам стабилизатора. и током делителя I2 (возможно регулирование), в) стабилизатора напряжения.

Варианты применения интегрального стабилизатора с фиксированным напряжением

Микросхемы позволяют создавать множество схем на основе стабилизаторов.

Регулировка выходного напряжения

Как я уже писал выше (см. рис. 5б) линейные стабилизаторы позволяют изменять выходное напряжение. Подробная схема показана на рис. 7.

По той же схеме возможно и функциональное регулирование выходного напряжения.

Например возможно регулирование выходного напряжения в зависимости от температуры для применения в системах стабилизации температуры - термостатах. В зависимости от типа температурного датчика он может включаться вместо резисторов R 1 или R 2 .



Рисунок 7

Параллельное включение стабилизаторов

Рисунок 7

Данный регулятор имеет ту особенность, что (для устойчивой раскрутки вентилятора) в начальный момент времени на вентилятор подается полное напряжение (12В). После того как конденсатор С1 зарядится напряжение на выходе будет определяться резистором R 2.

Стабилизатор с плавным выходом на номинальное напряжение

Рисунок 8

Данная схема отличается тем, что в начальный момент времени напряжение на выходе стабилизатора равно 5В (для данного типа), после чего напряжение плавно поднимается до величины определяемой регулирующими элементами.

Собрал А.Сорокин,