Энергетические механизмы обеспечения организма энергией. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов

При непрерывном поступлении О2 в митохондрии мышечных клеток действует кислородная система энергопродукции (ресинтеза АТФ). При работах аэробного характера с повышением интенсивности (мощности) нагрузки увеличивается количество О2 , потребляемого мышцами в единицу времени. Поскольку между скоростью потребления О2 (л/мин) и мощностью работы (Вт) аэробного характера существует прямолинейная зависимость, интенсивность работы можно характеризовать скоростью потребления О2 При определенной, индивидуальной для каждого человека, нагрузке достигается максимально возможная для него скорость потребления О2 - максимальное потребление кислорода (МПК). Для физиологической оценки относительной мощности аэробной работы ее оценивают по относительной скорости потребления О2 , т.е. выраженному в процентах отношению скорости потребления О2 (л/мин) при выполнении данной работы к МПК. Для энергетического обеспечения мышечной работы кислородная система может в качестве субстратов окисления все основные питательные вещества - углеводы (гликоген и глюкозу), жиры (жирные кислоты); белки (аминокислоты). Вклад последних в энергообеспечение мал и практически не учитывается. Соотношение между окислительными углеводами и жирами определяется относительной мощностью аэробной работы (% МПК): чем больше относительная мощность аэробной работы, тем больший вклад окисляемых углеводов и соответственно меньше вклад в энергообеспечение жиров. Во время выполнения легкой работы при потреблении О2 50 % МПК (с предельной продолжительностью несколько часов) большая часть энергии образуется за счет окисления жиров. При выполнении более тяжелой работы (до 60 % от МПК), значительную часть энергопродукции обеспечивают углеводы. При работах близких к МПК, подавляющая часть аэробной энергопродукции идет за счет углеводов. Таким образом, при работе большой мощности основными энергетическими субстратами в работающих мышцах являются углеводы. Они расщепляются главным образом аэробно (окисляются) при работе продолжительностью до нескольких десятков минут и в значительной мере анаэробно (гликолитически) при менее продолжительной работе. Аэробное расщепление углеводов (гликогена и глюкозы) идет по тому же пути, что и при анаэробном гликолизе вплоть до образования пировиноградной кислоты. В последнем случае из-за недостатка О2 пировиноградная кислота превращается (восстанавливается) в молочную кислоту. В аэробных условиях прировиноградная кислота не восстанавливается в Lа, а окисляется. При этом образуются конечные продукты окисления – СО2 и Н2О. Мышечный гликоген является предпочтительным субстратом окисления во время интенсивной мышечной работы. Скорость его расходования находится в прямой зависимости с относительной мощностью работы (% МПК) и в обратной связи с содержание в мышцах. Чем больше мощность работы (сила сокращения мышц), тем выше скорость расходования гликогена. До мощности работы в 70 % МПК гликоген подвергается главным образом аэробному гликогенолизу. При более высоких нагрузках резко увеличивается скорость (доля) анаэробному гликогенолиза. При анаэробном гликогенолизе ресинтезирует в 13 раз меньше АТФ, чем при аэробном расщеплении гликогена. Это объясняет резкое повышение скорости расходования гликогена при увеличении мощности работы сверх 70 % МПК. По мере уменьшения содержания гликогена в мышцах скорость его расходования снижается, а расходование глюколизы из крови – увеличивается. Емкость кислородной системы, используемой в качестве субстрата окисления углеводов, составляет величину порядка 80 Моль Атор, или 800 ккал. Только за счет окисления доступных запасов углеводов нетренированный человек может пробежать 15 км. Другой важный субстрат кислородной системы жиры (липиды). Жиры обладают наибольшей энергетической емкостью из всех других мышечных источников энергии. 1 Моль АТФ - дает около 10 ккал; 1 Моль КРФ – около 10,5 ккал, 1 Моль глюкозы при анаэробном расщеплении около 50 ккал., при аэробном расщеплении (окислении) около 700 ккал., а 1 Моль жиров при окислении обеспечивает 2400 ккал. Запасы жиров в теле человека от 10 до 30 % всего веса. При работе на уровне 50-70 % МПК вклад этого источника очень велик. Приблизительные подсчеты показали, что за счет окисления всех запасенных в теле жиров активная мышечная масса (20кг) ресинтезировать несколько тысяч молей АТФ. Эта величина характеризует огромную энергетическую емкость кислородной системы, использующей жиры в качестве субстрата окисления. В целом кислородная система, использующая как углеводы так и жиры, обладает наибольшей энергетической емкостью, во много тысяч раз преобладая емкость лактацидной и фосфагенной систем. Однако в этой системе углеводы на 10-13 % эффективнее, чем жиры. Если выполняется работа близкая к МПК, около максимальная аэробная, работа, она в большей степени лимитируется скоростью потребления О2. В этом случае углеводы имеют преимущество перед жирами, т.к. для образования одного и того же количества энергии (АТФ) при окислении углеводов затрачивается меньшее количество О2 . Особенно эффективно в этом случае окисление мышечного гликогена, имеющего большую энергетическую эффективность О2. Наконец, общее количество энергии (АТФ), продуцируемое в единицу времени за счет окисления углеводов (особенно мышечного гликогена), вдвое больше, чем при окислении жиров.

Мониторинг частоты сердечных сокращений (ЧСС), совместно или без контроля уровня молочной кислоты (лактата), - на сегодняшний день неотъемлемый элемент тренировки, позволяющий спортсмену и наставнику подобрать оптимальную интенсивность, что позволяет при меньших нагрузках добиваться более высоких результатов. Эффективная тренировка, ведущая к высоким достижениям, возможна только при хорошем знании и правильном применении принципов энергообеспечения физической деятельности.

Энергетические системы

Аденозинтрифосфат (АТФ) в организме человека является универсальным источником энергии, которая высвобождается при распаде АТФ до аденозинфосфата (АДФ) и используется мышцами для выполнения механической работы. Запасы АТФ в мышцах незначительны, расходуются за 2 секунды. Системы ресинтеза АТФ (фосфатная, лактатная и кислородная) поддерживают относительное постоянство этого вещества.

Фосфатная система ресинтеза АТФ (анаэробная, алактатная) включает использование запасов АТФ в мышцах (2сек) и быстрое восстановление АТФ из креатинфосфата (КрФ), которого хватит ещё на 6-8 секунд. Система важна для всех взрывных, кратковременных и стремительных действий. Уже через 30 секунд после нагрузки АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут полностью. Важно - направленная тренировка соответствующими упражнениями с достаточными периодами отдыха не только повышает запасы АТФ и КрФ, но и ускоряет процесс распада и восстановления АТФ за счёт увеличения ферментативной базы, поэтому и представителям стайерских дисциплин полезно регулярно включать в основную тренировку краткие (не более 10 с), мощные, быстрые упражнения.

Кислородная система ресинтеза АТФ (аэробная) является наиболее важной в тренировках на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени, снабжая энергией посредством химического взаимодействия пищевых веществ (главным образом, жиров и углеводов) с кислородом. Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека (МПК - максимальное потребление кислорода). Углеводы - более эффективное топливо по сравнению с жирами, т.к. при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода, но запасов углеводов (гликоген печени и мышц) хватит на 60-90 минут активности, запасы жира практически неисчерпаемы, при окислении не образуется лактат. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов, чем не тренированный, т.е. будет расходовать энергию более экономно. Важно - обязательное включение длительных медленных тренировок в видах на выносливость.

Распад углеводов происходит в два этапа, на первом, протекающем без участия кислорода, образуется молочная кислота (лактат), которая используется в ресинтезе АТФ на втором этапе с участием кислорода. Пока потребляемого кислорода достаточно, молочная кислота не будет накапливаться в организме. Важно - элиминация лактата, основанная на его использовании на втором этапе углеводного энергообеспечения лежит в основе обязательных низкоинтенсивных заминок, активного отдыха и восстановительных тренировок.

Лактатная система

Итак, при росте интенсивности нагрузки и недостатке кислорода молочная кислота, образовавшаяся в первой анаэробной фазе, не нейтрализуется полностью во второй, аэробной, в результате накапливается в работающих мышцах, что приводит к ацидозу, или закислению мышц, основной причине мышечной усталости. При превышении определённого уровня интенсивности (который варьируется от человека к человеку) происходит активация механизма, посредством которого организм переходит на полностью анаэробное энергообеспечение, где в качестве источника используются исключительно углеводы. Ускорение, подъём, финишный рывок - за них ответственна лактатная система. При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки, что приводит достаточно быстро к резкому снижению интенсивности или отказу выполнять нагрузку.

Важно - в самом начале любого упражнения, независимо от его интенсивности энергообеспечение происходит только анаэробным путём. Каждый раз организму требуется несколько минут, чтобы аэробная система включилась в работу. Соответственно, разминка обязательна.

Ацидоз повреждает аэробную ферментативную систему мышечной клетки, что снижает аэробные способности. Если клетки повреждены ацидозом, то может потребоваться несколько дней, прежде чем ферментативная система начнёт снова нормально функционировать и аэробные возможности восстановятся, а аэробные тренировки будут эффективными. Повреждение мышечных стенок в результате ацидоза является причиной утечки веществ из мышечных клеток в кровь, замедляется образование КрФ, нарушается работа сократительного аппарата, страдает координация, тренировки на технику или скорость неэффективны, возрастает риск травм.

Типы мышечных волокон

Условно мышечные волокна разделяются на два типа: красные (тип1, медленно сокращающиеся) и белые (тип2, быстро сокращающиеся). Между мужчинами и женщинами не существует разницы в соотношении быстрых и медленных мышечных волокон, реакция на тренировку одинаковая. Красные мышечные волокна густо усеяны капиллярами, снабжаются энергией преимущественно аэробно, важны в видах на выносливость. Белые мышечные волокна (выделяют так же подтип2а - анаэробно-аэробные и подтип2в - анаэробные) обладают высокой анаэробной способностью, поэтому максимально используются в скоростно-силовых видах. Соотношение белых и красных волокон у отдельного человека генетически детерминировано, т.е. практически мы изначально рождаемся либо стайерами, либо спринтерами. Под воздействием тренировок некоторое количество белых волокон могут превратиться в красные, к сожалению, обратное действие невозможно. Выраженный стайер никогда не станет спринтером, а у спринтера есть шанс стать хорошим стайером. С возрастом спринтерские способности спортсмена снижаются быстрее, чем способности к выполнению длительной работы. Важно - в видах на выносливость обязательно находить время для скоростно-силовых тренировок, чтобы поддерживать соответствующие качества на достойном уровне.

Целенаправленная тренировка

Тренировка должна быть направлена именно на ту энергетическую систему, которая участвует в энергообеспечении конкретной спортивной деятельности. Результаты марафонца зависят от его способности выполнять длительную работу, поэтому его тренировки должны быть нацелены на совершенствование кислородной системы и расширение аэробных способностей. Для спринтера важны максимальные возможности его фосфатной системы, поэтому его тренировки должны быть направлены на увеличение числа высокоэнергетических фосфатов. В некоторых видах, например в беге на средние дистанции (400, 800, 1500м), лыжном спринте требуется тренировка все систем энергообеспечения, требуются высокие анаэробно-аэробные способности, спортсмены должны учиться бороться с сильным ацидозом.

Таблица 1. Зависимость подключения энергосистем от продолжительности нагрузки.

Продолжительность Скорость. Фосфатная система Аэробные способности. Кислородная система Анаэробные способности: фосфатная и лактатная системы
130 - 180 мин 0 95 5
28 - 50 мин 5 80 15
14 - 26 мин 10 70 20
9 - 16 мин 20 40 40
4 - 6 мин 20 35 55
2 - 3 мин 30 5 65
1 - 1,5 мин 80 5 15
22 - 35 с 98 0 2
10 - 16 с 98 0 2

Зависимость между продолжительностью нагрузки и относительным вкладом различных энергетических систем применима к любому виду спорта. Подключение той или иной энергетической системы зависит от продолжительности нагрузки. Например, для бега на 1 500м (продолжительность 4 - 6 мин) 20% тренировок должно быть направлено на совершенствование фосфатной системы (спринтерские тренировки), 25% - на повышение аэробной выносливости и 55% - на повышение анаэробных возможностей.

Итак, тренировка должна выполняться при определённой (для каждого вида спорта) интенсивности, которая измеряется в разных величинах - % от максимальной ЧСС (ЧССмах) или % от анаэробного порога (АнП). АнП обозначается нагрузка, выше которой организм переключается с аэробного на частично анаэробное. Международные обозначения зон интенсивности следующие: аэробная (А), развивающая (Е от endurance - выносливость, чуть выше анаэробного порога) и анаэробная (Аn). Каждая из трех зон разделяется на 2 подзоны. Существует так же восстановительная зона (R - recreation).

Таблица 2. Зоны интенсивности.

Зона инс-ти Характеристика % от АнП % от ЧССмах
R Восстановительная, очень низкая интенсивность 70 - 80 60 - 70
A1 Аэробная 1, низкая интенсивность 80 - 90 70 - 80
A2 Аэробная 2, средняя интенсивность 90 - 95 80 - 85
E1 Развивающая 1, транзитная зона 95 - 100 85 - 90
E2 Развивающая 2, высокоинтенсивная выносливость 100 - 110 90 - 95
An1 Анаэробная, основана на гликолизе максимальное энергообеспечение - 2-3 мин
An2 Анаэробная 2, основана на фосфатах Максимальное энергобеспечение - до 10с

Тренировка фосфатной системы

Главная цель - истощение высокоэнергетических фосфатов без накопления молочной кислоты. Лучший способ - спринты на максимальной (продолжительность отрезка 6-8сек) или субмаксимальной (20-30с) скоростях, выполняемые повторно (8-10раз) с большими паузами пассивного отдыха (3-5 мин в зависимости от подготовленности). Выполнение лёгкой нагрузки во время отдыха частично блокирует ресинтез АТФ и КрФ, приводит к их недостаточным запасам для следующего ускорения, активации анаэробной системы и накоплению лактата. Руководствуясь показателями ЧСС, управлять спринтерской тренировкой и вносить коррективы невозможно, для этого лучше использовать показатели лактата.

Тренировка лактатной системы

Основная цель - совершенствование способности спортсмена выполнять упражнение при высоких концентрациях лактата. Интенсивные тренировки в анаэробной зоне, лучший - интервальный метод, оптимальная продолжительность отрезков максимального усилия от 30с до 3-х минут, активный отдых от 30с до нескольких минут, концентрация лактата не должна снижаться слишком сильно. Важно - после напряжённых анаэробных нагрузок обязательны очень лёгкие восстановительные тренировки.

Тренировка кислородной системы

Лучший метод - тренировки на выносливость, то есть нагрузки с субмаксимальной мощностью в течение длительного времени без накопления лактата.

Интенсивная аэробная тренировка выполняется в виде интервальной работы (с короткими или длинными рабочими отрезками). В первом случае кислородная система полностью активируется, ЧСС 90% ЧССмах, т.е. на уровне или чуть выше анаэробного порога, отрезки 2-8 мин., количество интервалов 5 -8, отдых 4-6 мин., небольшое повышение лактата до 5-6 ммоль/л допустимо. Во втором случае, ЧСС 85-90% ЧССмах, отрезки 8-20 мин., количество 4-5, отдых 5 мин, лактат 3-4 ммоль/л. Данные тренировка не должна проводиться чаще 1-2 раз в неделю. Эффективны при хорошем самочувствии. При сопутствующей усталости или недостаточном восстановлении резко возрастает опасность перетренировки.

Промежуточная аэробная тренировка выполняется со средней интенсивностью (80-85% ЧССмах), лактат не накапливается, продолжительность зависит от соревнований, к которым готовиться спортсмен. Соревновательная дистанция обычно преодолевается 1 раз за неделю.

Экстенсивная аэробная тренировка представляет длительную непрерывную работу при ЧСС 70-80% ЧССмах продолжительностью от 90 мин, тренируют жировой обмен, часто совмещают с промежуточной аэробной тренировкой.

Восстановительная тренировка

Неотъемлемая часть общего тренировочного процесса. Работа при интенсивности менее 70% от ЧССмах не улучшает аэробные способности, но в большинстве случаев более выгодна для восстановления, чем пассивный отдых (см.выше).

*По книге - ЧСС, ЛАКТАТ И ТРЕНИРОВКИ НА ВЫНОСЛИВОСТЬ. П.ЯНСЕН. ТУЛОМА 2007г.

В книге изложены теория, практика и анализ тренировки спортсменов на выносливость на основе мониторинга частоты сердечных сокращений (ЧСС) и уровня молочной кислоты (лактата) в крови, приведены тесты нахождения анаэробного порога и оценки функционального состояния, обсуждаются проблемы перетренированности и спортивного сердца.

Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

Рассмотрим энергетическую систему организма подробнее.

Американский учёный Альберт Сент-Дьерди писал, что жизнь представляет собой непрерывный процесс поглощения, преобразования и перемещения энергии различных видов и различных значений.

Этот процесс самым непосредственным образом связан с электрическими свойствами живого вещества, а конкретнее с его электропроводностью.

Электрический ток- это упорядоченное движение заряженных частиц. Носителями электрических зарядов могут быть электроны, ионы и дырки (в полупроводниках). Так же для полупроводников характерна примесная проводимость. При добавлении в кристалл полупроводника атом другого элемента проводимость его увеличивается. Свойства полупроводников очень интересны. Они очень чувствительны к действию света, тепла, радиации и так далее. Если, например, на полупроводник падает свет, то его проводимость резко увеличивается, т.к. электроны с валентной зоны “отрываются” от ядра атома и обеспечивают электронную проводимость. Живое вещество очень похоже на полупроводник. Однако есть и очень принципиальное отличие. В макромолекулах живого энергия связи составляет всего несколько электрон-вольт, тогда как энергия связи в растворах или жидких кристаллах составляет порядка 20-30 эВ. Это свойство очень важно, так как позволяет обеспечить высокую чувствительность. Проводимость осуществляется электронами, которые переходят от одной молекулы к другой благодаря туннельному эффекту. В белковых и других биологических объектах очень высокая подвижность зарядоносителей. В системе углеродно-кислородных и водородно-азотных связей электрон (возбужденный) благодаря туннельному эффекту перемещается по всей системе белковой молекулы. Поскольку подвижность таких электронов очень высокая, то проводимость белковой системы высока.

В живом организме осуществляется и ионная проводимость. Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы. Носителями зарядов в этом случае являются ионы водорода - протоны. Только в живом организме все виды проводимости реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе. Чем меньше воды, тем меньше ионная проводимость. Если белки высушены, то проводимость осуществляют электроны.

Вообще влияние воды не только в том, что она является источником ионов водорода и таким образом обеспечивает возможность ионной проводимости. Вода играет более сложную роль в изменении общей проводимости. Дело в том, что вода является примесью- донором. Она поставляет электроны (каждая молекула воды разрывается на протон (ядро) и электрон). В результате электроны заполняют дырки, поэтому уменьшается дырочная проводимость. Она уменьшается в миллион раз. В дальнейшем эти электроны передаются белкам, и положение восстанавливается, но не полностью. Общая проводимость после этого всё же остаётся в 10 раз меньше, чем до добавления воды.

Можно добавить к белковым системам не только донор, но и акцептор, который бы приводил к увеличению числа дырок. Установлено, что таким акцептором является, в частности, хлоранил- вещество, содержащее хлор.

В результате дырочная проводимость увеличивается настолько, что общая проводимость белковой системы растёт в миллион раз.

Нуклеиновые кислоты также играют важную роль в живом организме. Несмотря на то, что их структура, водородные связи и так далее отличаются от таковых и у биологических систем, имеются вещества (небиологические) с принципиально подобными электрофизическими свойствами. В частности, таким веществом является графит. Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на несколько порядков меньше, чем у белков. Но электрофизические свойства аминокислот в целом принципиально такие же, как и свойства белков.

Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важные свойства. Благодаря ним механические воздействия в них превращаются в электричество. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство определяется наличием воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, на зависимости проводимости от освещенности основано действие палочек зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.

Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей.

Из сопоставления электрофизических свойств белковых систем и аминокислот с полупроводниками может создаться впечатление, что электрофизические свойства одних и других одинаковы. Это не совсем так. Хотя в белковых системах живого организма имеется и электронная, и дырочная, и ионная проводимость, но они связаны между собой более сложно, чем в неорганических и органических полупроводниках. Там эти проводимости просто складываются и получается суммарная, итоговая проводимость. В живых организмах такое арифметическое сложение проводимостей недопустимо. Здесь 1+1№ 2. Ничего странного в этом нет. Это говорит о том, что эти проводимости не являются независимыми друг от друга. Взаимные их изменения сопровождаются процессами, которые меняют общую проводимость по более сложному закону. Поэтому, говоря об электронной (или другой) проводимости белковых систем, добавляют слово “специфическая”. Процессы, определяющие электрофизические свойства живого, очень сложны. Одновременно с движением электрических зарядов, которое определяет собой электропроводность, действуют друг на друга и электромагнитные поля. Элементарные частицы обладают магнитными моментами, то есть являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом, то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние - они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного электрического состояния в другое. Получая дополнительную энергию, они возбуждаются. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. Таким образом, действие электромагнитных полей меняет движение заряженных частиц. С помощью этих зарядоносителей осуществляется передача информации в центральной нервной системе (ЦНС). Сигналы в ЦНС, обеспечивающие работу всего организма как единого целого, являются электрическими импульсами. Но они распространяются значительно медленнее, чем в технических системах. Это обусловлено сложностью процесса. Организм отвечает действием на определенное внешнее воздействие только после того, как он получил информацию об этом воздействии. Ответная реакция организма очень замедлена потому, что сигналы о внешнем воздействии распространяются медленно. Таким образом, скорость защитных реакций живого организма зависит от электрофизических свойств живого вещества. Если же действуют извне электрические и электромагнитные поля, то эта реакция еще больше замедляется. Это установлено как в лабораторных опытах, так и при изучении влияния электромагнитных полей во время магнитных бурь на живые системы. Кстати, если бы реакция живого организма на внешнее воздействие была во много раз быстрее, то человек был бы способен защититься от многих воздействий, от которых он сейчас погибает.

Сегодня люди еще не знают всех свойств комплексной электропроводности живого вещества. Но ясно то, что именно от них зависят те принципиально отличные свойства, которые присущи только живому.

Для раскрытия сущности электрических явлений в живом организме необходимо понять смысл потенциала биологической системы, биопотенциала.

Потенциал-это энергетическая возможность. Для того чтобы оторвать электрон из атома водорода, надо преодолеть силы, которые удерживают его в атоме, то есть, необходима энергия для выполнения этой работы. Энергия элементарных частиц измеряется в электрон-вольтах. Энергия, затраченная на отрыв электрона от ядра атома, называется потенциалом ионизации. Для водорода он равен 13 эВ. Для атомов разных элементов он имеет свои значения.

В живых веществах энергия связи в молекулах составляет 0,01-1 эВ. В неживых молекулах 30-50 эВ. Измерить потенциал ионизации в биологических молекулах очень сложно из-за малости минимальных значений энергии электронов. Поэтому лучше их характеризовать не абсолютными величинами (электрон-вольтами), а относительными. Можно принять за единицу потенциал ионизации воды (речь идет о воде, которая содержится в биологических системах). Теперь можно определить потенциалы ионизации всех других биологических соединений. Тут еще одна тонкость. У атома водорода имеется всего один валентный электрон. Поэтому его потенциал ионизации равен единице. Если атом и молекула более сложные, то их электроны имеют различные энергетические возможности для отрыва. В таких случаях потенциал ионизации относят к валентным электронам, то есть электроны с наименьшей энергией связи.

В биологических системах в результате определенного распределения электрических зарядов имеются электрические поля, поэтому за счет кулоновских сил возможно притяжение и отталкивание электрических зарядов. Энергетической характеристикой электрического поля является разность потенциалов (Δj). Разность потенциалов в биологических системах (биопотенциалов) очень мала до 10 -6 эВ. Величина биопотенциалов является однозначным показателем состояния биосистемы или её частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма, как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Её оценивают по величине электрической активности.

Биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря участию в них электронов.

Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Установлено, что для человека характерны следующие биоритмы мозга (в Гц): Дельта-ритм – 0,5-3 Гц; Тета-ритм – 4-7 Гц; Альфа-ритм – 8-13 Гц; Бета-ритм – 14-35 Гц; Гамма-ритм – 36-55 Гц.

Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины – до 500 мкВ.

Кто знаком с электроникой, тот знает, что при передаче информации и её обработке важна не только частота следования импульсов и их амплитуда, но и форма импульсов.

Как формируются эти импульсы? Их характеристики говорят о том, что они не могут создаваться изменениями ионной проводимости. В этом случае процессы развиваются более медленно, то есть они более инерционны. Эти импульсы могут формироваться только движением электронов, масса которых гораздо меньше массы ионов.

Роль формы электрических импульсов можно понять на примере эффективности дефибрилляции сердца. Оказалось, что эффективность восстановления работы сердца зависит от формы импульса подаваемого электрического напряжения. Важна и его спектральная плотность. Только при определённой форме импульсов происходит восстановление обычного движения зарядоносителей в живом организме, то есть восстанавливается обычная электропроводность, при которой возможно нормальное функционирование организма.

В этом методе электроды прикладываются к телу человека в области груди. Но электрические импульсы в данном случае действуют не только непосредственно на сердечную мышцу, но и на центральную нервную систему. Видимо, второй путь наиболее эффективен, поскольку возможности ЦНС по воздействию на все органы самые широкие. Команды всем органам поступают через ЦНС быстрее всего, поскольку её электропроводность значительно выше, чем электропроводность мышечных тканей и кровеносной системы. Таким образом, возвращение организма к жизни происходит в том случае, если удаётся восстановить электрофизические свойства живого вещества, а точнее специфические движения электрически зарядов с теми особенностями, которые присущи живым системам.

Решающее значение для жизни и функционирования живого организма имеют именно электрофизические свойства живого. Об этом свидетельствуют и такие факты.

Установлено, что если на человека внезапно действуют раздражающие факторы, то сопротивление тела человека электрическому току резко изменяется. Принципиально важно, что неожиданные внешние воздействия могут иметь различную физическую природу. Это может быть и яркий свет, и прикосновение горячего предмета, и сообщение человеку неожиданной, важной для него информации. Во всех случаях результат один - электропроводность тела человека увеличивается. Это изменение зависит и от силы внешнего фактора. Но во всех случаях увеличение электропроводности происходит очень быстро, а её восстановление к нормальным величинам - значительно медленнее. Быстрое изменение электропроводности может происходить только за счет электронной.

Возьмём воздействие на человека внешнего фактора (электрический ток). Последствия этого воздействия зависят не только от его величины, сколько от состояния нервной системы человека в этот момент. Смерть под действием внешнего фактора наступает в том случае, если нарушается электропроводность ЦНС. Если под действием внешних факторов движение зарядоносителей в клетках головного мозга нарушается, то происходит полное или частичное прекращение питание клеток кислородом.

Конечно, этот вопрос очень непростой. Уже сейчас установлено, что электропроводность разных живых организмов и разных систем в одном живом организме различна. Органы, которые должны быстрее всего реагировать на внешние раздражители, обладают наименее инерционной проводимостью - электронной и электронно-дырочной.

Теперь рассмотрим энергетическую систему организма.

Существуют мнения различных учёных о том, что в организм поступает энергия, которая обеспечивает его функционирование как целого, а также всех составляющих его частей. Заряды энергии могут иметь как положительные, так и отрицательные знаки. В здоровом организме имеется равновесие положительных и отрицательных элементов энергии. Это означает равновесие между процессами возбуждения и торможения. Когда же равновесие между потоками положительной и отрицательной энергии нарушены, то организм переходит в состояние болезни, поскольку нарушено равновесие процесса возбуждения и торможения.

Слово «энергия» является одним из наиболее употребляемых слов в нашем лексиконе. Мы говорим об энергетических влияниях, о плохих и хороших энергиях, о передачи энергии и т.п. Хотя на сегодняшний день на нашей планете нет человека, который бы смог дать определение самому понятию – «энергия». Мы можем наблюдать только превращение энергии из одного вида в другой, совершенно не понимая, что это такое, откуда оно взялось и где находится источник энергии. Словом «энергия» мы называем множество самых разных явлений, а некоторые люди представляют себе «энергию» в виде какой-то материальной субстанции, которую можно концентрировать, лепить из нее «шарики» и т.п.

В некоторых упражнениях Метода Сильвы используется метафора – например, «представь энергию своего тела в виде свете, тепла и т.п. …» очень важно понимать, что метафорическое описание не есть описанием дословным, в человеческом языке, из-за незнания сущность энергии, пока нет соответствующих терминов. А само слово «энергия», в переводе с древнегреческого означает «способность выполнять работу». Вполне вероятно, что древнее значение этого слово намного ближе к истине, чем некоторые современные его толкования. Термин «энергия» является скорее философским термином, чем просто описательным. То есть «накопление энергии в теле», может означать только одно – сигнал организму повысить свою способность выполнять работу. Именно так, во всяком случае, в Методе Сильвы, это слово следует воспринимать.

Выдающийся американский ученый Альберт Сент-Дьерди писал, что жизнь представляет собой непрерывный процесс преобразования энергии различных видов. Этот процесс самым непосредственным образом связан с электрическими свойствами живого вещества, а конкретнее, с его способностью проводить электрический ток (электропроводностью).



Электрический ток - это упорядоченное движение электрических зарядов. Носителями электрических зарядов могут быть электроны (заряжены отрицательно), ионы (положительные и отрицательные) и дырки. О «дырочной» проводимости стало известно не очень давно, когда были открыты материалы, которые получили название полупроводников.

До этого все вещества делили, с точки зрения электрической проводимости, на проводники и изоляторы. Затем были открыты полупроводники. Это открытие оказалось впрямую связанным с пониманием процессов, протекающих в живом организме. Оказалось, что многие процессы в живом организме могут быть объяснены благодаря применению электронной теории полупроводников. Аналогом молекулы полупроводника является макромолекула живого. Изучение свойств полупроводников показало, что эти вещества сближают живую и неживую природу. Что в них напоминает свойства живого?

Они очень чувствительны к действию внешних факторов; под их влиянием изменяют свои электрофизические свойства. Так, при повышении температуры электрическая проводимость неорганических и органических полупроводников очень сильно увеличивается. У металлов в таком случае она уменьшается.

На проводимость полупроводников оказывает влияние свет. Под его действием на полупроводнике возникает электрическое напряжение. Значит, происходит превращение энергии света в энергию электрическую (солнечные батареи). Полупроводники реагируют не только на свет, но и на проникающую радиацию (в том числе и на рентгеновское излучение). На свойства полупроводников влияют давление, влажность, химический состав воздуха и т.д. Аналогичным образом мы реагируем на изменение условий во внешнем мире. Под действием внешних факторов меняются биопотенциалы тактильных, вкусовых, слуховых, зрительных анализаторов.

Электрический ток зависит от количества переносимых зарядов и от скорости переноса. Эту скорость называют подвижностью. Подвижность зарядов (в дырке) в полупроводниках значительно больше, чем в металлах (проводниках). Поэтому у них даже при относительно малом числе носителей зарядов проводимость может быть существенной. Полупроводники можно образовать и другим способом. В вещество можно внести атомы других элементов, у которых уровни энергии расположены в запрещенной зоне. Эти внесенные атомы являются примесями. Так можно получить вещество - полупроводник с примесной проводимостью. Проводники с примесной проводимостью широко используются как преобразователи первичной информации, поскольку их проводимость зависит от многих внешних факторов (температуры, интенсивности и частоты проникающего излучения).

В организме человека имеются вещества, которые обладают и примесной проводимостью. Одни примесные вещества при их введении в кристаллическую решетку поставляют электроны в зону проводимости. Поэтому их называют донорами. Другие примеси захварывают электроны из валентной зоны, то есть образуют дырки. Их называют акцепторами.

В настоящее время установлено, что в живом веществе имеются атомы и молекулы, как доноры, так и акцепторы. Но живое вещество обладает и такими свойствами, которых нет у органических и неорганических полупроводников. Это свойство - очень малые значения энергии связи. Так, для гигантских биологических молекул энергия связи составляет всего несколько электрон-вольт, тогда как энергия связи в растворах или жидких кристаллах находится в пределах 20-30 эВ. Это свойство очень принципиально, поскольку позволяет обеспечить высокую чувствительность.

В живом организме реализуется и ионная проводимость. Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы. Носителями зарядов в этом случае являются ионы водорода - протоны. Только в живом организме вес виды проводимости (электронная, дырочная, ионная) реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе.

Нуклеиновые кислоты также играют важную роль в живом организме. Несмотря на то, что их структура, водородные связи и т.д. отличаются от таковых и у биологических систем, имеются вещества (небиологические) с принципиально подобными электрофизическими свойствами. Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важные свойства.

Благодаря ним механические воздействия в них превращаются в электричество. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство аминокислот определяется наличием в них воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, на зависимости проводимости от освещенности (фотопроводимость) основано действие палочек зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.

Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей (ионов и электронов и др.). Можно не сомневаться, что именно в электрофизических свойствах живого вещества заложена возможность быть живым.

Об этом Сент-Дьерди писал так: «Я глубоко убежден, что мы никогда не сможем понять сущность жизни, если ограничимся молекулярным уровнем. Ведь атом - это система электронов, стабилизируется ядром, а молекулы не что иное, как атомы, удерживаемые вместе валентными электронами, то есть электронными связями ».

Одновременно с движением электрических зарядов (электронов, ионов, дырок), которое определяет собой электропроводимость, действуют друг на друга и электромагнитные поля. Элементарные частицы обладают магнитными моментами, т.е. являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом (а они обязаны это делать), то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние - они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного электрического состояния в другое. Получая дополнительную энергию, они возбуждаются. Когда они от нее освобождаются, то переходят в основное энергетическое состояние. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. Таким образом, действие электромагнитных полей меняет движение электронов, ионов и других зарядоносителей.

С помощью этих зарядов носителей осуществляется передача информации в центральной нервной системе. Сигналы в центральной нервной системе, обеспечивающие работу всего организма как единого целого, являются электрическими импульсами. Но они распространяются значительно медленнее, чем в технических системах. Это обусловлено сложностью всего комплекса процессов, которые оказывают влияние на движение зарядоносителей, на их подвижность, а значит, и на скорость распространения электрических импульсов.

Организм отвечает действием на определенное внешнее воздействие только после того, как он получил информацию об этом воздействии. Ответная реакция организма очень замедлена потому, что сигналы о внешнем воздействии распространяются медленно. Таким образом, скорость защитных реакций живого организма зависит от электрофизических свойств живого вещества. Если же действуют извне электрические и электромагнитные поля, то эта реакция еще больше замедляется. Это установлено как в лабораторных опытах, так и при изучении влияния электромагнитных полей во время магнитных бурь на живые системы, в том числе и на человека.

Для раскрытия сущности электрических явлений в живом организме необходимо понять смысл потенциала биологической системы, биопотенциала. В физике понятие потенциала имеет следующий смысл.

Потенциал - это возможность, В данном случае - энергетическая возможность. Для того чтобы оторвать орбитальный электрон из атома водорода, надо преодолеть силы, которые удерживают его в атоме, то есть надо обладать энергетической возможностью эту работу выполнить.

Для того, чтобы произвести ионизацию атомов и молекул живого вещества, надо приложить значительно меньшую энергию, чем при воздействии на неживые вещества. В живых веществах, как уже говорилось, энергия связи в молекулах составляет единицы и даже сотые доли электрон-вольт. В неживых молекулах и атомах эта энергия находится в пределах нескольких десятков электрон-вольт (30-50).

В биологических системах в результате определенного распределения электрических зарядов (их поляризации) имеются электрические поля, поскольку между электрическими зарядами действуют электрические силы (силы Кулона) отталкивания и притяжения в зависимости от того, являются ли эти заряды одноименными или разноименными соответственно.

Энергетической характеристикой электрического поля является разность потенциалов между разными точками этого поля. Разность потенциалов определяется электрическим полем, которое, в свою очередь, определяется распределением заряженных частиц. Распределение заряженных частиц определяется взаимодействием между ними. Разность потенциалов в биологических системах (биопотенциалов) может составлять единицы милливольт. Величина биопотенциалов является однозначным показателем состояния биосистемы или ее частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Возникают реакции, которые наносят вред организму, его функционированию и структуре.

Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма, как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Ее оценивают по величине электрической активности. Без движения зарядоносителей все эти функции организма были бы невозможны. Таким образом, биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря тому, что в этих процессах участвуют легкие заряженные частицы - электроны.

Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Это знакомые Тебе следующие биоритмы мозга (в Герцах): дельта-ритм (0,5- 4), тета-ритм {4-7), альфа-ритм (7-14), бета-ритм (14-21). Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины - до 5010 мкВ.

Кто знаком с электроникой, тот знает, что при передаче информации и ее обработке важна не только частота следования импульсов и их амплитуда, но и форма импульсов,

Как формируются эти импульсы? Их характеристики говорят о том, что они не могут создаваться изменениями ионной проводимости. В этом случае процессы развиваются более медленно, то есть они более инерционны. Эти импульсы могут формироваться только движением электронов, масса (а значит и инерционность) которые значительно меньше.

Команды всем органам поступают через центральную нервную систему быстрее всего, поскольку ее электропроводность (а значит и скорость распространения информации) значительно выше, чем электропроводность мышечных тканей и кровеносной системы. Решающее значение для жизни и функционирования живого организма имеют именно электрофизические свойства живого. Об этом свидетельствуют и такие факты,

Установлено, что если на человека внезапно действуют раздражающие факторы, то сопротивление тела человека электрическому току (чем больше сопротивление, тем меньше электропроводность) резко изменяется. Принципиально важно, что неожиданные внешние воздействия могут иметь различную физическую природу. Это может быть и яркий свет, и прикосновение горячим предметом, и сообщение человеку неожиданной, важной для него информации. Во всех случаях результат один - электропроводность тела человека увеличивается. Изменение во времени электропроводности зависит как от самого действующего внешнего фактора, так и от его сипы. Но во всех случаях увеличение электропроводности происходит очень быстро, а ее восстановление к нормальным величинам - значительно медленнее. Быстрое изменение электропроводности может происходить только за счет электронной (той или иной), которая является наименее инерционной.

По-видимому, медицина в будущем будет лечить человека от различных недугов, прежде всего восстановлением электрофизических свойств центральной нервной системы.

Конечно, этот вопрос очень непростой. Уже сейчас установлено, что электропроводность разных живых организмов и разных систем в одном живом организме различи а. Органы и системы организма, которые должны для обеспечения выживания реагировать на внешние раздражители быстрее всего, обладают наименее инерционной проводимостью - электронной и электронно-дырочной.

Извне в организм поступает энергия, которая обеспечивает его функционирование как целого, а также всех составляющих его частей.

Заряды энергии могут иметь как положительный, так и отрицательный знаки. Необходимо иметь в виду, что речь идет не об электрических зарядах. В здоровом организме имеется равновесие положительных и отрицательных элементов энергии. Это означает равновесие между процессами возбуждения и торможения (элементы энергии одного знака возбуждают работу органа, а противоположного знака - тормозят ее). Когда же равновесия между потоками положительной и отрицательной энергии нарушены, то организм (или отдельный его орган) переходит в состояние болезни, поскольку нарушено равновесие процессов возбуждения и торможения. При этом одни заболевания обусловлены чрезмерным возбуждением функций (синдром избытка), а другие их угнетением (синдром недостатка). Для излечения организма необходимо восстановить равновесие (баланс) положительного и отрицательного видов энергии в нем. Этого можно достичь воздействием иглой на биологически активные точки кожи.

Энергия из воздуха поступает в различные органы и системы организма через определенную энергопроводящую систему. Каждый орган имеет свои каналы для поступления этой энергии. Правда, в данном случае каждый орган надо понимать не узко анатомически, а шире, исходя из его функций. Так, в орган «сердце» надо включать всю систему, которая обеспечивает как вес функции кровообращения, так и некоторые элементы психической деятельности человека. В орган «почки» включаются наряду с системой мочеобразования и мочевыделения и все железы внутренней секреции, В орган «легкие» включена и кожа. Орган «печень» включает не только систему обеспечения обменных процессов, но и их регуляцию центральной нервной и вегетативной системами. Система, обеспечивающая все процессы восприятия и переработки в организме пищи, ассоциируется с «селезенкой».

Таким образом, для понимания работы организма более правильно рассматривать не узко анатомические органы, а определенные функциональные системы. Важен не орган сам по себе, а его функция. Важно знать, как настроить эту функцию, если она нарушена. Каждая такая функциональная система (орган) получает энергию из воздуха (из космоса) через определенные каналы движения энергии на поверхности кожи. Эти каналы называют меридианами. Каждый орган потребляет энергию, которая поступает через определенный меридиан. Меридианы являются главными каналами, магистралями, по которым энергия извне поступает к данному органу (в описанном выше широком смысле этого слова). Наряду с ними имеются и менее важные пути поступления энергии. Они в свою очередь разветвляются, и так вся кожа оказывается покрытой сетью эти каналов.

Весь путь, по которому энергия поступает из воздуха к органу, делится на два этапа. На первом ее этапе происходит ее захват. Эта часть меридиана располагается на руках и ногах. Через последующую часть меридиана происходит транспортировка энергии к данному органу или системе организма.

На коже концентрируется необходимая органу энергия, потому что процессы возбуждения и торможения в данном органе притягивают к себе элементы энергии извне (разных знаков соответственно). Так в результате внутренней активности организма на коже концентрируются частицы необходимой энергии. Это находит отражение в названиях меридианов (энергоканалов) специалистами: они говорят - меридиан руки и легких, меридиан ноги и почек и т.п. По одним меридианам к органу поступает энергия возбуждения, а по другим - энергия противоположного знака - то есть торможения,

«Работают» меридианы не независимо друг от друга, а очень согласованно. Так же согласованно работают органы (в здоровом организме). При этом все каналы (меридианы), а значит и органы, составляют единую согласованную систему, по которой проходит энергия в организме. Все органы и системы в организме работают в определенном ритме. Точнее, имеется много ритмов.

Поскольку все энергетические каналы (меридианы) соединены в единую систему, то есть являются своего рода сообщающимися сосудами, то на любой орган можно воздействовать не только через его «собственный» меридиан, но и через меридианы других органов. Так можно действовать возбуждающе или угнетающе. Каждый энергетический канал не является однородным. На нем располагаются физиологические активные точки.

Организм и космос представляют собой единую систему. В живой организм поступает энергия непосредственно из космоса, то есть происходит прямой энергообмен между организмом и окружающей средой.

Для большинства это покажется необычным, поскольку мы воспитаны на том, что энергия в организме возникает в результате распада веществ (пищи). Функционирование всех органов и систем организма не только взаимосвязано (что является естественным и не вызывает сомнения), но и управляется некоей энергетической, (лучше сказать информационно-энергетической) службой организма, Она обеспечивает всю регуляцию в организме. Без информации, ее получения, анализа, переработки и передачи управлять ничем и никем нельзя. Поэтому эта служба, связанная с потоками энергии из космоса в организм и в самом организме, является информационной.

Если эта служба по каким-то причинам нарушается (например, состояние среды препятствует поступлению энергии извне), то нарушается и ход регуляторных процессов в системах организма. Это может стать основой нарушения правильной работы организма, то есть причиной заболевания.

Поток энергии из космоса внутрь организма не может быть произвольным, нерегулируемым. В организм должно поступать столько энергии, сколько ее требуется для правильного его функционирования. Это количество зависит от выполняемой (физической и умственной) работы, от психоэмоционального напряжения и т. д. и т.п. Поэтому естественно, что в организме должны быть регуляторы, которые на основании анализа о состоянии организма и его потребностях в энергии регулировали бы поступление в него энергии из космоса.

У нас в стране изучение биоэнергетики человека начало проводиться на экспериментальном уровне с применением сложных приборов в 1920-е. годы в лаборатории А. Г. Гурвича. Он же и ввел понятие «биополя». Исследователям удается регистрировать нечто, что, возможно, в той или иной мере связано с биополем человека. При этом должно быть ясно, что какое-то одно проявление биополя, или, иначе говоря, составляющая его может не совпадать пространственно с другой его частью. Это можно пояснить на таком примере. Имеется некий предмет, конструкция, которая может быть видна, когда ее освещают видимым светом, ультрафиолетовым излучением, рентгеновскими лучами и т.д. При этом каждый раз форма этой конструкции высвечивается разная, хотя конструкция является единой, неделимой.

С делением клеток (митозом) связано определенное излучение, которое обнаружил и измерял А. Г. Гурвич. Он назвал его) «митогенетическим». Было установлено, что если под это излучение попадают другие клетки, то и их митоз (деление) увеличивается, то есть стимулируется их рост. Эксперименты Гурвича повторил в 1928 году Денни Габор, который в 1971 году стал нобелевским лауреатом в области физики. Габор проводил свои эксперименты в лаборатории концерна «Сименс» в Берлине вместе со своим коллегой Т.Рейтером. В 1954 году итальянцы Л. Колли и У. Фатчини сумели измерить митогенетические лучи Гурвича. Их интенсивность оказалась слишком маленькой. Она составляла всего несколько квантов в секунду на квадратный сантиметр. Для сравнения - нормальный дневной свет сильнее в миллиард умноженный на миллиард раз.

В настоящее время специалисты рассматривают несколько возможных механизмов образования биофотонов. Они обращают внимание на то, что после подачи кислорода у живых организмов значительно возрастает поток фотонов. Объясняется это процессам и окисления во время выработки энергии из глюкозы и кислорода. При этом вырабатываются энергонасыщенные вещества в виде аденозинтрифосфата. Биофотоны излучаются и в других процессах. Так, они излучались в процессе реакции липидов с фосфатами, кислородом и ионами железа - в результате которых образуются перекиси липидов с молекулярным кислородом. Биофотоны излучаются и во время фагоцитоза. То же самое происходит при их химическом возбуждении. Источниками биофотонов могут служить и составные части протеинов, ядра клеток тепа, а также носители наследственной информации, то есть ДНК,

Физик Фриц Понн и биолог Вальтер Нагль полагают, что фотонное излучение регулирует периодичность обмена веществ клеток и создает нервные импульсы. Более того, это излучение, передавая нервные импульсы во всем организме, обеспечивает необходимые для существования организма ритмы, гарантирует синхронность жизненно важных для организма процессов. То, что биофотоны имеют малую интенсивность, не должно удивлять Эффективность от их воздействия на биомолекулы в 1040 раз выше такой же эффективности обычных фотонов, которые не рождены клетками организма. Поэтому не надо удивляться, что они прекрасно справляются с ролью регуляторов химических, в том числе и ферментативных реакций обменного разложения.

Если у человека ампутируют какой-либо орган, то биополе (будем так его называть) остается прежним, все оно остается на своем месте. Это одно. Второе, это то, что биополе человека с самого начала, с самого момента его зарождения уже является по своей форме и объему взрослым. Пока человек растет, он постепенно заполняет отведенный ему при рождении объем,

Излучение (поле) является генетическим, т. е. что в нем заложена информация о живом существе, которое должно развиться, мы как будто мало оставляем самим генам. Что же остается в их функции? А. Г. Гурвич считал, что благодаря генам образуются нужные для роста и жизни организма белки.

Раз имеется прямая связь - от головного мозга к коже, то должна быть и обратная связь: от кожи к мозгу. То, что она существует, не выбывает сомнения. Важно пойти дальше - управлять этой связью, т. е., воздействуя на кожу, управлять процессами в головном мозгу, а значит и во всем организме.

Развивая идеи А. Л. Чижевского, Ж. Кальмор показал, что «кожа является органом поглощения космического излучения, кванты которого, соединяясь с внутренней энергией обмена, определяют всю энергетическую базу организма ».

Кожа и нервная система формируются из одной структуры. Поэтому между ними существует теснейшая связь, благодаря которой осуществляется перераспределение электрических зарядов между ними.

Сложный анализ экспериментальных данных, показал, что электрическое воздействие на биологически активные точки вызывает сдвиг во всей нервной системе. А это значит, что повышается активность высших регуляторных инстанций коры больших полушарий, а значит - растет уровень мозговой регуляции. Так стало возможным положительно ответить на вопрос о возможности прямого влияния на работу высших уровней коры больших полушарий через кожу.

Понимание того, что организм человека имеет непосредственную энергетическую связь с Вселенной появилось в древнейшие времена. Индийские философы назвали такую структуру получения и распределения энергии системой чакр.

Сам термин «чакра» пришел к нам из санскрита и означает он дословно «колесо». В некоторых южных странах и сейчас можно увидеть приспособления, предназначенные для подъема и перераспределения воды из водоема. Называют такие приспособления «чигирями», что дословно опять же означает «колесо». Такие приспособления известны с глубокой древности и, очевидно, именно они натолкнули древних философов на мысль назвать энергетические центры организма, места где накопляется и откуда распределяется накопленная энергия – «колесами».

Семь основных чакр располагаются рядом с определенными органами физического тела, в основном с эндокринными железами. Между собой они соединены центральным каналом, известным как «сушумна». Центральный канал совпадает с позвоночником, поэтому семь основных чакр своими «стеблями» почти соприкасаются с главными нервными сплетениями и конкретными эндокринными железами.

Корневая, или основная чакра : Находится около основания позвоночника. Является центром связи с природой и планетой. Имеет отношение ко всем вопросам, связанным с физической природой - т.е. с телом, органами чувств, чувственностью, полом человека, выживанием, агрессией и самозащитой.

На физическом плане соотносится с эндокринной системой через надпочечные железы. Ее энергии также оказывают влияние на нижние части таза, бедра, ноги и ступни.

Вибрации чакры совпадают с вибрациями красного цвета, когда она находится в уравновешенном состоянии. Как и цвет всех остальных чакр, ее цвет может быть увиден только внутренним видением и идентичен цвету физического спектра. В гармоничном состоянии все цвета должны быть резонирующими без каких-либо теней или затемнений.

Крестцовая или сакральная чакра : Располагается напротив сакральных частей позвоночника, между пупком и корневой чакрой. Имеет отношение ко всем вопросам, связанным с творчеством и сексом (нашим самовыражением в сексуальном плане).. Это местонахождения радости, а также изначальное место нашего «внутреннего» ребенка. На физическом плане эта чакра соотносится с яичками у мужчин и яичниками у женщин. Ее энергии же взаимодействуют с энергиями органов мочевой системы, матки, органов нижнего пищеварения, нижней части спины.

В состоянии равновесия вибрации сакральной чакры совпадают с вибрациями оранжевого цвета.

Чакра солнечного сплетения : Располагается напротив солнечного сплетения, мы обычно ощущаем, когда «сосет под ложечкой». Через нее проявляются разум и личная воля, а также эмоции, основанные на страхе, - беспокойство, уверенность, ревность, гнев, образуя значимую связь между умом и эмоциями.

На физическом плане чакра солнечного сплетения соотносится с островками Лангерганса, расположенными в поджелудочной железе. Ее энергии также взаимодействуют с энергиями солнечного и селезеночного нервных сплетений, пищеварительной системы, поджелудочной железы, печени, желчного пузыря, диафрагмой (а, следовательно, и дыхания) и средней части спины.

Находясь в состоянии равновесия, чакра солнечного сплетения вибрирует на той же частоте, что и желтый цвет. Ее цвет - ярко золотисто-желтый.

Сердечная чакра : Располагается в центре груди. Это местонахождение души, нашего внутреннего наставника, а также место расположения «высоких» эмоций, основанных на безусловной любви, таких как симпатия, сострадание, настоящая любовь, дружба, братство. На этом уровне чувства остаются не ограниченными разумом. Сердечная чакра имеет дело с вопросами, связанными с любовью и привязанностью.

На физическом уровне она соотносится с вилочковой железой. Ее энергии также взаимодействуют с энергиями сердечного и легочного нервных сплетений, сердца, легких, бронхиальных трубок, грудной клетки, верхней части спины и рук.

Находясь в состоянии равновесия, сердечная чакра вибрирует с той же частотой, что и зеленый цвет.

Горловая чакра : Имеет отношение ко всем вопросам, связанным с общением и самовыражением посредством слов, живописи, музыки, танца и т.д.

На физическом плане она соотносится со щитовидной и над щитовидной железами. Ее энергии также взаимодействуют с энергиями нервного сплетения глотки, горловых органов, шеи, носа, рта, зубов, ушей. Это чакра ушей, носа и горла.

Находясь в состоянии равновесия, горловая чаща вибрирует с той же частотой, что и небесно-голубой цвет.

Межбровная чакра (третий глаз): Располагается в центре лба (внутри черепа). Здесь находятся интуиция и духовное знание. Она управляет деятельностью нижележащих чакр. Она отвечает за контроль сил разума и ментального рассудка. Имеет дело с вопросами, связанными с развитием интуиции и умением ей доверять, восприятием мудрости души и развитием и применением высокочувствительного восприятия в качестве жизненного навыка.

На физическом уровне соотносится с гипоталамусом. Ее энергии также взаимодействуют с энергиями головных нервов, головного мозга, глаз и лица.

В состоянии равновесия излучает те же вибрации, что и цвет индиго или благородный синий.

Коронная чакра : Располагается в области головы. Является центром объединения духовных энергий. Обеспечивает прямую связь с Источником и имеет дело со всеми вопросами, связанными с духовностью.

На физическом уровне она соотносится с шишковидной железой (определителем света). Ее энергии также взаимодействуют с энергиями мозга и остальной части тела.

В состоянии равновесия коронная чакра излучает те же вибрации, что и фиолетовый цвет.

Упражнение: Четыре элемента .

Древние философы считали, что основой жизни является соединение четырех первичных элементов: воздуха, воды, огня и земли. Гармоничная жизнь, является следствием пропорционального соединения этих элементов, любые диспропропорции вызывают нарушения. Можешь использовать метафору четырех первичных элементов мироздания для гармонизации своего внутреннего мира.

Войди в состояние альфа способом отсчета от трех до одного. В состоянии альфа сосредоточь внимание на своем дыхании. Дыхание поставляет твоему физическому телу первичный элемент воздуха. Осознанность дыхания обеспечивает свободный круговорот жизненной силы в твоем организме, то есть универсальной энергии и улучшает, тем самым, его функциональность.

Затем визуализируй кровь, текущую в кровеносных сосудах Твоего организма, доставляющую кислород к органам и очищающая твое тело от ненужных субстанций. Подумай о крови, как о водном первоэлементе своей сущности.

Почувствуй тепло в коже, задачей которой является поддержание температурного режима и контакт с универсальной энергией Вселенной, и осознай присутствие первоэлемента огня в твоем теле.

И, наконец, сосредоточься на костях скелета, являющихся опорой для тела и придающих ему соответствующую форму. Кости скелета – земной элемент Твоего существования.

Расширь свое сознание и представь весь окружающий тебя мир, почувствуй присутствие этих первоэлементов во всех живых существах, почувствуй свое единство с ними и со всей Вселенной.

Когда будешь готов, выйди из состояния расслабления.