История популяционной генетики. Популяционная генетика популяционная генетика это раздел генетики который

Область применения и теоретическая часть

Возможно, наиболее значимым «формальным» достижением современной синтетической теории эволюции является формирование математической основы популяционной генетики. Некоторые авторы (Beatty, 1986) даже считают, что математическое объяснение динамики популяций является основой синтетической теории эволюции.

Ричард Левонтин (1974) сформулировал теоретические задачи популяционной генетики. Он обрисовал два аспекта популяционной генетики: генетический и фенотипический . Основная цель завершённой теории популяционной генетики - это сформулировать набор законов, отображающий переход от набора генотипов (G 1) к серии возможных фенотипов (P 1), с учётом действия естественного отбора , а также набора законов, которые бы позволяли по набору фенотипов (P 2) в полученной популяции охарактеризовать представленные в ней генотипы (G 2); так как менделевская генетика может предсказать следующее поколение генотипов по набору фенотипов, кольцо замыкается. Вот схематическая визуализация этой трансформации

(По Lewontin 1974, p. 12).

Даже оставив в стороне тот момент, что в ходе классических работ на уровне изучения наследования и молекулярно-генетических исследований обнаружены многие отклонения от менделевского наследования, это представляется колоссальной задачей.

T 1 представляет генетические и эпигенетические законы, аспекты функциональной биологии или биологии развития, которые описывают переход от генотипа к фенотипу. Обозначим это как «отображение генотип-фенотип». T ² - это изменения, связанные с действием естественного отбора, T ³ - эпигенетические связи, которые определяют генотипы на основе избранных фенотипов и, наконец, T 4 - закономерности менделевской генетики.

Практически, есть две ветви эволюционной теории, которые существуют параллельно: традиционная популяционная генетика, оперирующая наборами генотипов, и биометрическая теория, оперирующая наборами фенотипов изучаемых объектов, которая используется в селекции растений и животных. Определённая часть системы, переход от фенотипа к генотипу, как правило, теряется. Это приводит к тому, что изменчивость в системе, описываемая с помощью одних подходов, характеризуется как стабильная, или постоянная, при использовании других подходов или в других условиях - характеризуется как закономерно эволюционно изменяющаяся. Следовательно, для адекватной постановки какого-либо популяционного исследования требуется иметь определённые знания об изучаемой системе. В частности, если фенотип почти полностью определяется генотипом (например, в случае серповидно-клеточной анемии), или временной промежуток при исследовании достаточно мал, выявленные параметры могут рассматриваться как постоянные, однако во многих случаях это некорректно.

Этапы развития генетики популяций

  1. Вторая половина 20-х - конец 30-х годов XX века. В это время происходило накопление данных о генетической гетерогенности популяций. Он завершился выработкой представлений о полиморфизме популяций.
  2. 40-е -середина 60-х годов XX века. Изучение механизмов поддержания генетического полиморфизма популяций. Появление и развитие представлений о важной роли гетерозиса в формировании генетического полиморфизма.
  3. Вторая половина 60-х - конец 1970-х годов XX века. Этот этап характеризуется широким применением белкового электрофореза для изучения полиморфизма популяций. Формируются представления о нейтральном характере эволюции .
  4. С конца 1970-х годов. Этот период характеризуется методическим смещением в сторону применения ДНК-технологий для изучения особенностей процессов происходящих в популяциях. Важным моментом этого этапа (примерно с начала 1990-х годов) является широкое применение вычислительной техники и специализированных программ (например, PHYLIP , Clustal , Popgene) для анализа разнообразных типов генетических данных.

Известные популяционные генетики

Фундаментальную закономерность, описывающую соотношения между частотами аллелей генов и фенотипов вывели независимо Харди и Вайнберг в 1908 году . В это время популяционной генетики не существовало, тем не менее, найденная исследователями зависимость лежит в основе данной науки. Работы С. С. Четверикова по выявлению насыщенности природных популяций Drosophila melanogaster рецессивными мутациями так же дали важный импульс для развития популяционно-генетических исследований.

Основателями теоретического и математического аппарата популяционной генетики можно считать английских биологов Рональда Фишера (1890-1962) и Джона Холдейна (1892-1964), а также американского ученого Сьюэла Райта (1889-1998). Фишер и Райт расходились по некоторым фундаментальным вопросам и дискутировали о соотношении ролей отбора и генетического дрейфа. Французский исследователь Гюстав Малеко (1911-1998) также внёс важный вклад в раннее развитие рассматриваемой дисциплины. Противоречия между американскими и британскими «школами» продолжались долгие годы. Джон Мейнард Смит (1920-2004) был учеником Холдейна, в то время как У. Д. Гамильтон (1936-2000) находился под сильным влиянием работ Фишера. Американский исследователь Джордж Прайс (1922-1975) работал с ними обоими. Последователями Райта в США стали Ричард Левонтин (р. 1929) и японский генетик Мотоо Кимура (1924-1994). Итальянец Луиджи Лука Кавалли-Сфорца (р. 1922), генетик популяций, с 1970-х гг. работавший в Стэнфорде , особое внимание уделял вопросам генетики популяций человека.

См. также

  • Формула выборок Эвенса
  • Вмещающий ландшафт
  • Мутационная катастрофа
  • Генетика количественных признаков

Литература

  1. Кайданов Л. З. Генетика популяций. Москва. Изд-во "Высшая школа", 1996. 320 с.

Wikimedia Foundation . 2010 .

  • Моника Геллер
  • Salomon Sports

Смотреть что такое "Популяционная генетика" в других словарях:

    Популяционная генетика - * папуляцыйная генетыка * population genetics …

    популяционная генетика - Раздел генетики, изучающий закономерности наследственности и изменчивости на уровне популяций; становление П.г. связывается с работами В.Иоганзена (работа о наследовании в популяциях и чистых линиях, 1903), Г. Харди и Э. Вайнберга (закон Харди… … Справочник технического переводчика

    ПОПУЛЯЦИОННАЯ ГЕНЕТИКА - раздел генетики, изучающий генетический состав, генетическую динамику природных популяций. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    ПОПУЛЯЦИОННАЯ ГЕНЕТИКА - раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания.… … Энциклопедия Кольера

    популяционная генетика - population genetics популяционная генетика. Pаздел генетики, изучающий закономерности наследственности и изменчивости на уровне популяций ; становление П.г. связывается с работами В.Иоганзена (работа о наследовании в популяциях… … Молекулярная биология и генетика. Толковый словарь.

    популяционная генетика - populiacijų genetika statusas T sritis ekologija ir aplinkotyra apibrėžtis Genetikos šaka, tirianti populiacijų genetinę struktūrą, genetiniams pokyčiams ir genų dažnumui poveikį darančių veiksnių dėsningumus. atitikmenys: angl. population… … Ekologijos terminų aiškinamasis žodynas

    популяционная генетика - populiacijų genetika statusas T sritis augalininkystė apibrėžtis Genetikos kryptis, apimanti genetinės populiacijų sandaros ir jų raidos veiksnių tyrinėjimus. atitikmenys: angl. population genetics rus. популяционная генетика … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    Популяционная генетика - раздел генетики (См. Генетика), изучающий генетическое строение и динамику генетического состава популяций (См. Популяция). Факторами, определяющими в популяциях изменения частот отдельных Генов и Генотипов, являются мутационный процесс… … Большая советская энциклопедия

    ПОПУЛЯЦИОННАЯ ГЕНЕТИКА - Раздел генетики, который занимается изучением законов, определяющих генетическую структуру популяций и действующие в популяции эволюционные факторы. Методы популяционной генетики широко используются в животноводстве … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    Популяционная биология - * папуляцыйная біялогія * population biology научное направление, изучающее характер связей организмов во времени и в пространстве. П. б. включает в себя такие дисциплины, как экология, таксономия, этология, популяционная генетика и др., которые… … Генетика. Энциклопедический словарь

Книги

  • Генетика человека. Проблемы и подходы (комплект из 3 книг) , Ф. Фогель, А. Мотульский. Книга двух известных генетиков из ФРГ и США является фундаментальным учебником по генетике человека, охватывающим практически все основные направления этой области науки. Она может служить…
Генетика человека с основами общей генетики [Учебное пособие] Курчанов Николай Анатольевич

8.1. Популяционная генетика

8.1. Популяционная генетика

Генетика популяций постулирует, что единица эволюционного процесса должна представлять собой неделимое единство и быть способной изменяться в ряду поколений. Ни вид, ни особь не удовлетворяют этим критериям. Элементарной единицей эволюционного процесса является популяция.

Популяция – это изолированная группа особей одного вида, связанная общностью территории и происхождения. Этот термин был предложен В. Иоганнсеном в 1909 г.

Представление о популяции как единице эволюции сформировалось почти сразу после возникновения дарвинизма. Популяция представляет собой непрерывный ряд поколений, она характеризуется и наследственностью, и изменчивостью. Понятие популяции применимо для организмов, как размножающихся половым путем, так и для лишенных полового процесса.

В период становления популяционной генетики считалось, что генетическая изменчивость природных популяций весьма мала, большинство локусов содержат доминантные аллели (аллели дикого типа) и лишь несколько локусов содержат мутантные аллели. Выходило, что «нормальный» генотип особи в природе гомозиготен почти по всем локусам.

В настоящее время принята так называемая балансовая теория популяций, предложенная Ф. Добжанским (Dobzhansky Тh., 1937). Согласно ей, изменчивость природных популяций очень велика, составляющие популяцию особи гетерозиготны по большинству локусов, не существует аллелей «дикого типа». При этом подчеркивается, что отсутствует какой-либо «нормальный» генотип. Генофонд популяции, включающий в себя все аллели всех населяющих популяцию особей, весьма разнообразен. Мерой генетической изменчивости популяции служит такое понятие, как гетерозиготность.

Гетерозиготность популяции показывает среднюю частоту особей, гетерозиготных по определенным локусам. Для подсчета гетерозиготности сначала определяют частоты гетерозигот по каждому локусу, а затем вычисляют среднее из полученных результатов. Чем большее количество локусов будет исследовано, тем более точная оценка изменчивости популяции будет получена. Исследования показали, что для приблизительной оценки достаточно проанализировать около 20 локусов.

Гетерозиготность – надежный показатель изменчивости. Она определяет вероятность того, что два любых аллеля одного локуса из генофонда популяции, взятые наугад, будут разными. Средняя гетерозиготность популяций человека составляет 6,7 % (Айала Ф., Кайгер Дж., 1988).

Таким образом, популяция – это совокупность генотипов, различающихся по многим локусам. Большинство локусов характеризуются множественными аллелями. Такое явление получило название полиморфизма. Количественным выражением полиморфизма популяции служит полиморфность (Р), показывающая долю полиморфных локусов. Так, если в исследованной популяции из 40 локусов 8 локусов оказались полиморфными (представленными несколькими аллелями), а 32 – мономорфными (представленными одним аллелем), то Р = 0,2, или 20 %.

Полиморфизм не выражает в полной мере степень генетической изменчивости популяции. Все локусы, имеющие больше одного аллеля, при вычислении Р будут равнозначными. Однако один локус может иметь в популяции 2 аллеля, а другой – 20. Не изменяет Р и относительная частота аллелей при одинаковом их числе. Аллели могут быть более-менее равномерно представлены в популяции, а может наблюдаться явное превалирование одного аллеля над всеми остальными.

Как и в случае многих других генетических терминов, различие между понятиями «мутация» и «полиморфизм» достаточно условное. Обычно, если какая-нибудь последовательность ДНК встречается чаще, чем в 1 % случаев, то говорят о полиморфизме, если реже, чем в 1 %, то о мутации. В геноме человека среднее число вариаций для каждого гена равняется 14 (Тарантул В. З., 2003). Значительным полиморфизмом характеризуется и число различных повторов, что у человека играет важную диагностическую роль.

Важнейшей характеристикой популяции являются показатели частот аллелей и генотипов составляющих ее особей. Их позволяет рассчитать ключевой закон популяционной генетики – закон Харди – Вайнберга. Он гласит, что при случайном скрещивании и отсутствии внешних факторов частота аллелей в популяции постоянна.

Для обозначения частот аллелей в популяционной генетике используются специальные символы: р – частота аллеля А; q – частота аллеля а; тогда p + q = 1.

Для расчета частот генотипов применяют формулу квадрата двучлена:

(p + q ) 2 = p 2 + 2pq + q 2 ,

где p 2 – частота генотипа АА; 2pq – частота генотипа Аа; q 2 – частота генотипа аа.

Применение закона Харди – Вайнберга для расчета частот аллелей у человека наглядно демонстрирует пример аутосомно-рецессивных болезней. Зная частоту встречаемости генетического заболевания, по формуле Харди – Вайнберга мы можем рассчитать частоту аллелей (с поправкой на погрешность). Например, одно из тяжелейших аутосомно-рецессивных заболеваний человека – муковисцидоз , встречается с частотой 1: 2500. Поскольку все случаи проявления обусловлены гомозиготой рецессивного аллеля, то:

q 2 = 0,0004; q = 0,02;

p = 1 – q = 1–0,02 = 0,98.

Частота гетерозигот (2pq ) = 2 ? 0,98 ? 0,02 = 0,039 (около 4 %).

Мы видим, что почти 4 % людей (совсем не мало) являются носителями гена муковисцидоза . Это показывает, сколь большое число рецессивных патогенных генов находится в скрытом состоянии.

При множественном аллелизме частоты генотипов определяются возведением в квадрат многочлена из частот аллелей. Например, имеются три аллеля: а 1 , а 2 , а 3 .

Их частоты соответственно: p, q, r . Тогда p + q + r = 1.

Для расчета частот генотипов:

(p + q + r ) 2 = p 2 + q 2 + r 2 + 2pq + 2pr + 2rq ,

где p 2 – частота генотипа а 1 а 1 ; q 2 – частота генотипа а 2 а 2 ; r 2 – частота генотипа а 3 а 3 ; 2pq – частота генотипа а 1 а 2 ; 2pr – частота генотипа а 1 а 3 ; 2rq – частота генотипа а 2 а 3 .

Необходимо отметить, что сумма частот генотипов, как сумма частот аллелей всегда будет равна 1, т. е. (p + q ) 2 = (p + q + r ) 2 = =… = 1. Частоты генотипов остаются неизменными в последующих поколениях.

Если число аллелей одного локуса обозначить k , то число возможных генотипов (N ) можно рассчитать по специальной формуле:

В строгом виде закон Харди – Вайнберга применим только для идеальной популяции, т. е. достаточно большой популяции, в которой осуществляется свободное скрещивание и не действуют внешние факторы. Только при этих условиях популяция находится в равновесии. Такие идеальные условия в природе никогда не реализуются. Рассмотрим подробнее два ограничения применения закона Харди – Вайнберга, касающиеся свободного скрещивания и действия внешних факторов.

В генетике популяций выделяют два вида скрещиваний:

1. Панмиксия – свободное скрещивание: вероятность образования брачной парыне зависит от генотипа партнеров. В отношении целых генотипов панмиксия в природе почти никогда не соблюдается, однако она вполне применима в отношении отдельных локусов.

2. Ассортативность – избирательное скрещивание: генотип влияет на выбор брачного партнера, т. е. особи с определенными генотипами спариваются чаще, чем при случайной вероятности. Избирательное скрещивание не изменяет частот генов, но изменяет частоты генотипов. Одной из крайних разновидностей ассортативности является целенаправленный инбридинг – скрещивание между родственными особями. Применительно к человеку ассортативность будет рассматриваться в разделе психогенетики.

Отклонение от равенства Харди – Вайнберга свидетельствует о том, что на популяцию действует какой-либо внешний фактор. Для анализа изменений генных частот в настоящее время разработаны сложные и довольно громоздкие системы уравнений. Это объясняется наличием переменных факторов, влияющих на результат. Разновидности эволюционных факторов мы рассмотрим чуть ниже, а пока отметим, что в любой достаточно большой популяции отклонения будут весьма незначительны, поэтому закон Харди – Вайнберга позволяет проводить важнейшие расчеты и является основой популяционной генетики. Но эти отклонения становятся значимыми, когда мы начинаем рассматривать процесс в эволюционном масштабе времени. Динамика генофонда популяций и представляет эволюцию на генетическом уровне.

Из книги Микробиология автора Ткаченко Ксения Викторовна

8. Генетика макроорганизмов Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК.Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности, транспозоны,

Из книги Общая экология автора Чернова Нина Михайловна

8.2. Популяционная структура вида Каждый вид, занимая определенную территорию (ареал), представлен на ней системой популяций. Чем сложнее расчленена территория, занимаемая видом, тем больше возможностей для обособления отдельных популяций. Однако в не меньшей степени

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Частная генетика собаки Генетика окраскиИсследованием окраски собак занимались многие ученые. Сведения по генетике этого признака были опубликованы в монографиях Ильина (1932), Доусона (1937), Уитни (1947), Бернса и Фрезер (1966) и других. Многие авторы детально исследовали

Из книги Новая наука о жизни автора Шелдрейк Руперт

Генетика поведения собак Несмотря на все многообразие и сложность поведения собаки, его наследование подчиняется тем же закономерностям, что и морфологические признаки. Разнообразие пород, отличающихся друг от друга формами поведения, издавна привлекало внимание

Из книги Наше постчеловеческое будущее [Последствия биотехнологической революции] автора Фукуяма Фрэнсис

7.1. Генетика и наследственность Наследственные различия между организмами, одинаковыми в других отношениях, зависят от генетических различий; эти последние зависят от различий в структуре ДНК или в ее расположении в хромосомах, а эти различия ведут к изменениям в

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Генетика и преступность Если есть на свете что-то более политически спорное, чем связь между наследственностью и интеллектом, то это - генетические корни преступности. Попытки свести криминальное поведение к биологии имеют столь же длинную и проблематичную историю, как

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Что изучает наука генетика? Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими. В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. д., а в

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Генетика развития Не вызывает сомнений, что генетика развития представляет собой сейчас одну из наиболее активных областей биологии в отношении как теоретических построений, так и эксперимента. Однако в течение трех первых десятилетий XX в., когда и генетика, и биология

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

29. Генетика пола Вспомните!Каково соотношение мужчин и женщин в человеческой популяции?Что вам известно об определении пола из предыдущих курсов биологии?Какие организмы называют гермафродитными?Проблема взаимоотношения полов, морфологические и физиологические

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Тема 6. Молекулярная генетика Кто ясно мыслит, тот ясно излагает. А. Шопенгауэр (1788–1860), немецкий философ Молекулярная генетика изучает молекулярные основы наследственности и изменчивости. Основное положение молекулярной генетики связано с признанием ведущей роли

Из книги Антропология [Учебное пособие] автора Хасанова Галия Булатовна

Генетика популяций Генетика популяций постулирует, что единица эволюционного процесса должна представлять неделимое единство и быть способной изменяться в ряду поколений. Ни вид, ни особь не удовлетворяют этим критериям. Элементарной единицей эволюционного процесса

Из книги автора

11.2. Популяционная экология Основной структурой теоретических построений экологии является популяция. На популяционном уровне сформулированы базовые экологические понятия и

Задачи:

  1. Дать характеристику основным методам изучения генетики человека.
  2. Изучить генетические основы структуры и эволюции популяций.

Методы изучения генетики человека

Каждый крупный этап развития генетики был связан с использованием определенных объектов для генетических исследований. Теория гена и основные закономерности наследования признаков были установлены на опытах с горохом, для обоснования хромосомной теории наследственности использовалась мушка дрозофила, для становления молекулярной генетики - вирусы и бактерии. В настоящее время главным объектом генетических исследований становится человек.

Рис. 1. Условные обозначения, принятые при составлении родословных:
1 - мужчина; 2 - женщина; 3 - пол не выяснен; 4 - обладатель изучаемого признака; 5 - гетерозиготный носитель изучаемого рецессивного гена; 6 - брак; 7 - брак мужчины с двумя женщинами; 8 - родственный брак; 9 - родители, дети и порядок их рождения; 10 - разнояйцевые близнецы; 11 - однояйцевые близнецы.

Для генетических исследований человек является очень неудобным объектом, так как у человека: большое количество хромосом, невозможно экспериментальное скрещивание, поздно наступает половая зрелость, малое число потомков в каждой семье, невозможно уравнивание условий жизни для потомства.

Однако, несмотря на эти трудности, генетика человека достаточно хорошо изучена. Это оказалось возможным благодаря использованию разнообразных методов исследования.

Генеалогический метод. Использование этого метода возможно лишь в том случае, когда известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений (рис. 1). После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Благодаря генеалогическому методу, было установлено, что у человека наблюдаются все типы наследования признаков, известные для других организмов, и определены типы наследования некоторых конкретных признаков. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев) (рис. 2), возможность свертывать язык в трубочку (рис. 3), брахидактилия (короткопалось, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Рис. 2. Родословная по полидактилии (аутосомно-доминантное наследование).

Рис. 3. Доминантный признак - способность свертывать язык в трубочку (1) и его рецессивный аллель - отсутствие этой способности (2).

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование - гемофилия, дальтонизм; У-сцепленное - гипертрихоз (повышенного оволосения ушной раковины), перепонки между пальцами. Имеется ряд генов, локализованных в гомологичных участках Х- и У-хромосомы, например общая цветовая слепота.

Установлением типа наследования признаков значение метода не ограничивается. Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Ярким примером этого является наследование гемофилии в царских домах Европы.

Близнецовый метод. Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми) (рис. 4).

Рис. 4. Образование монозиготных (1) и дизиготных (2) близнецов.

В гаметах и зиготах условно обозначены только половые хромосомы, а также хромосомы, несущие ген темных волос (черные) и ген светлых волос (белые).

Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления разделилась на две (или более) частей. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью) по многим признакам.

Дизиготные близнецы развиваются из одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток.

Поэтому они наследственно различны и могут быть как одного, так и или разного пола. В отличие от монозиготных, дизиготные близнецы часто характеризуются дискордантностью - несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Конкордантность некоторых признаков человека

Как видно из таблицы, степень коркондантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность однояйцевых близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, умственной отсталости, эпилепсии, сахарного диабета и других. Наблюдения за однояйцевыми близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных. К их числу относятся: синдром Клайнфельтера, синдром Шерешевского-Тернера, трисомия Х, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47,ХХУ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Шерешевского-Тернера (45,Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Шерешевского-Тернера имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, "монголоидный" разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47, 21,21,21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция 5-й хромосомы приводит к развитию синдрома "крик кошки". У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный "мяукающий" тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие. Делеция 21 хромосомы приводит к возникновению одной из форм белокровия.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Генетика человека - одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

Генетика популяций

Популяция - это совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция не только единица вида, форма его существования, но и единица эволюции. В основе микроэволюционных процессов, завершающихся видообразованием, лежат генетические преобразования в популяциях.

Изучением генетической структуры и динамики популяций занимается особый раздел генетики - популяционная генетика.

С генетической точки зрения, популяция является открытой системой, а вид - закрытой. В общей форме процесс видообразования сводится к преобразованию генетически открытой системы в генетически закрытую.

Каждая популяция имеет определенный генофонд и генетическую структуру. Генофондом популяции называют совокупность генотипов всех особей популяции. Под генетической структурой популяции понимают соотношение в ней различных генотипов и аллелей.

Одними из основных понятий популяционной генетики являются частота генотипа и частота аллеля. Под частотой генотипа (или аллеля) понимают его долю, отнесенную к общему количеству генотипов (или аллелей) в популяции. Частота генотипа, или аллеля, выражается либо в процентах, либо в долях единицы (если общее количество генотипов или аллелей популяции принимается за 100% или 1). Так, если ген имеет две аллельные формы и доля рецессивного аллеля а составляет 3/4 (или 75%), то доля доминантного аллеля А будет равна 1/4 (или 25%) общего числа аллелей данного гена в популяции.

Большое влияние на генетическую структуру популяций оказывает способ размножения. Например, популяции самоопыляющихся и перекрестноопыляющихся растений существенно отличаются друг от друга.

Впервые исследование генетической структуры популяции было предпринято В.Иоганнсеном в 1903 г. В качестве объектов исследования были выбраны популяции самоопыляющихся растений. Исследуя в течение нескольких поколений массу семян у фасоли, он обнаружил, что у самоопылителей популяция состоит из генотипически разнородных групп, так называемых чистых линий, представленных гомозиготными особями. Причем из поколения в поколение в такой популяции сохраняется равное соотношение гомозиготных доминантных и гомозиготных рецессивных генотипов. Их частота в каждом поколении увеличивается, в то время как частота гетерозиготных генотипов будет уменьшаться. Таким образом, в популяциях самоопыляющихся растений наблюдается процесс гомозиготизации, или разложения на линии с различными генотипами.

Большинство растений и животных в популяциях размножаются половым путем при свободном скрещивании, обеспечивающем равновероятную встречаемость гамет. Равновероятную встречаемость гамет при свободном скрещивании называют панмиксией, а такую популяцию - панмиктической.

Закон Харди-Вайнберга

В 1908 г. английский математик Г.Харди и немецкий врач Н.Вайнберг независимо друг от друга сформулировали закон, которому подчиняется распределение гомозигот и гетерозигот в панмиктической популяции, и выразили его в виде алгебраической формулы.

Частоту встречаемости гамет с доминантным аллелем А обозначают p, а частоту встречаемости гамет с рецессивным аллелем а - q. Частоты этих аллелей в популяции выражаются формулой p + q = 1 (или 100%). Поскольку в панмиктической популяции встречаемость гамет равновероятна, можно определить и частоты генотипов.

Харди и Вайнберг, суммируя данные о частоте генотипов, образующихся в результате равновероятной встречаемости гамет, вывели формулу частоты генотипов в панмиктической популяции:

р 2 + 2pq + q 2 = 1.

АА + 2Аа + аа = 1

Пользуясь этими формулами, можно рассчитать частоты аллелей и генотипов в конкретной панмиктической популяции. Однако действие этого закона выполняется при соблюдении следующих условий: неограниченно большая численность популяции, все особи могут свободно скрещиваться друг с другом, все генотипы одинаково жизнеспособны, плодовиты и не подвергаются отбору, прямые и обратные мутации возникают с одинаковой частотой или настолько редко, что ими можно пренебречь, отток или приток новых генотипов в популяцию отсутствует.

В реально существующих популяциях выполнение этих условий невозможно, поэтому закон справедлив только для идеальной популяции. Несмотря на это, закон Харди-Вайнберга является основой для анализа некоторых генетических явлений, происходящих в природных популяциях. Например, если известно, что фенилкетонурия встречается с частотой 1:10000 и наследуется по аутосомно-рецессивному типу, можно посчитать частоту встречаемости гетерозигот и гомозигот по доминантному признаку. Больные фенилкетонурией имеют генотип q2(аа) = 0,0001. Отсюда q = 0,01. p = 1 - 0,01 = 0,99. Частота встречаемости гетерозигот равна 2pq, равна 2 х 0,99 х 0,01 0,02 или около 2%. Частота встречаемости гомозигот по доминантному и рецессивному признакам: АА = p2 = 0,992 98%, аа = 0,01%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов и другие.

Именно благодаря этим явлениям возникает элементарное эволюционное явление - изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Литература.

1. Грин Н., Стаут У., Тейлор Д. Биология. - М.: мир, 1990. - Т.1-3.

2. Гончаров О.В. Пименов А.В. Биология. Ч.1, Цитология, генетика, селекция: Пособие для поступающих в вузы. - Саратов: Лицей-интернат при СГАУ им. Н.И. Вавилова, 2001.

3. Ярыгин В.Н. Биология для поступающих в вузы. - М.: Высшая школа, 2006.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА
раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания. Такие группировки, если они самовоспроизводятся в поколениях, а не поддерживаются только за счет пришлых особей, называют популяциями. Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища. У сельскохозяйственных животных популяцией принято считать породу: все особи в ней единого происхождения, т.е. имеют общих предков, содержатся в сходных условиях и поддерживаются единой селекционной и племенной работой. У аборигенных народов популяция - это члены связанных родством стойбищ. При наличии миграций границы популяций размыты и потому неопределимы. Например, все население Европы - потомки кроманьонцев, заселивших наш континент десятки тысяч лет назад. Изоляция между древними племенами, усиливавшаяся с развитием у каждого из них собственного языка и культуры, вела к различиям между ними. Но обособленность их относительна. Постоянные войны и захваты территории, а в последнее время - гигантская миграция вели и ведут к определенному генетическому сближению народов. Приведенные примеры показывают, что под словом "популяция" следует понимать группировку особей, связанных территориальной, исторической и репродуктивной общностью. Особи каждой популяции отличаются друг от друга, и каждая из них в чем-то уникальна. Многие из этих различий наследственные, или генетические, - они определяются генами и передаются от родителей к детям. Совокупность генов у особей данной популяции называют ее генофондом. Для того чтобы решать проблемы экологии, демографии, эволюции и селекции, важно знать особенности генофонда, а именно: сколь велико генетическое разнообразие в каждой популяции, каковы генетические различия между географически разделенными популяциями одного вида и между различными видами, как генофонд изменяется под действием окружающей среды, как он преобразуется в ходе эволюции, как распространяются наследственные заболевания, насколько эффективно используется генофонд культурных растений и домашних животных. Изучением этих вопросов и занимается популяционная генетика.
ОСНОВНЫЕ ПОНЯТИЯ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ
Частоты генотипов и аллелей. Важнейшим понятием популяционной генетики является частота генотипа - доля особей в популяции, имеющих данный генотип. Рассмотрим аутосомный ген, имеющий k аллелей, A1, A2, ..., Ak. Пусть популяция состоит из N особей, часть которых имеет аллели Ai Aj. Обозначим число этих особей Nij. Тогда частота этого генотипа (Pij) определяется как Pij = Nij/N. Пусть, например, ген имеет три аллеля: A1, A2 и A3 - и пусть популяция состоит из 10000 особей, среди которых имеются 500, 1000 и 2000 гомозигот A1A1, A2A2 и A3A3, а гетерозигот A1A2, A1A3 и A2A3 - 1000, 2500 и 3000 соответственно. Тогда частота гомозигот A1A1 равна P11 = 500/10000 = 0,05, или 5%. Таким образом мы получаем следующие наблюдаемые частоты гомо- и гетерозигот:

P11 = 0,05, P22 = 0,10, P33 = 0,20, P12 = 0,10, P13 = 0,25, P23 = 0,30.

ИЗМЕНЕНИЕ ЧАСТОТ АЛЛЕЛЕЙ ПРИ ДРЕЙФЕ. Представлены результаты моделирования процесса дрейфа генов в двух популяциях численности N = 25 и двух популяциях численности N = 250, при частоте аллеля равной 0,5 в исходном поколении. Под действием дрейфа частота данного аллеля хаотически меняется из поколения в поколение, причем "скачки" частот более выражены в популяциях меньшей численности. За 50 поколений дрейф привел к фиксации аллеля в одной популяции численности N = 25, и к полной его элиминации - в другой. В популяциях большей численности этот аллель еще находится на промежуточных частотах, но популяции уже заметно отличаются друг от друга начиная с 60-го поколения.




ЛИТЕРАТУРА
Тимофеев-Ресовский Н.В., Яблоков А.В., Глотов Н.В. Очерк учения о популяции. М., 1973 Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3, М., 1988 Фогель Ф., Мотульски А. Генетика человека, тт. 1-3. М., 1990

Энциклопедия Кольера. - Открытое общество . 2000 .

раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания. Такие группировки, если они самовоспроизводятся в поколениях, а не поддерживаются только за счет пришлых особей, называют популяциями. Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища. У сельскохозяйственных животных популяцией принято считать породу: все особи в ней единого происхождения, т.е. имеют общих предков, содержатся в сходных условиях и поддерживаются единой селекционной и племенной работой. У аборигенных народов популяция - это члены связанных родством стойбищ.

При наличии миграций границы популяций размыты и потому неопределимы. Например, все население Европы - потомки кроманьонцев, заселивших наш континент десятки тысяч лет назад. Изоляция между древними племенами, усиливавшаяся с развитием у каждого из них собственного языка и культуры, вела к различиям между ними. Но обособленность их относительна. Постоянные войны и захваты территории, а в последнее время - гигантская миграция вели и ведут к определенному генетическому сближению народов.

Приведенные примеры показывают, что под словом «популяция» следует понимать группировку особей, связанных территориальной, исторической и репродуктивной общностью.

Особи каждой популяции отличаются друг от друга, и каждая из них в чем-то уникальна. Многие из этих различий наследственные, или генетические, - они определяются генами и передаются от родителей к детям.

Совокупность генов у особей данной популяции называют ее генофондом. Для того чтобы решать проблемы экологии, демографии, эволюции и селекции, важно знать особенности генофонда, а именно: сколь велико генетическое разнообразие в каждой популяции, каковы генетические различия между географически разделенными популяциями одного вида и между различными видами, как генофонд изменяется под действием окружающей среды, как он преобразуется в ходе эволюции, как распространяются наследственные заболевания, насколько эффективно используется генофонд культурных растений и домашних животных. Изучением этих вопросов и занимается популяционная генетика.

ОСНОВНЫЕ ПОНЯТИЯ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ Частоты генотипов и аллелей . Важнейшим понятием популяционной генетики является частота генотипа - доля особей в популяции, имеющих данный генотип. Рассмотрим аутосомный ген, имеющий k аллелей, A 1 , A 2 , …, A k . Пусть популяция состоит из N особей, часть которых имеет аллели A i A j . Обозначим число этих особей N ij . Тогда частота этого генотипа (P ij ) определяется как P ij = N ij /N. Пусть, например, ген имеет три аллеля: A 1 , A 2 и A 3 - и пусть популяция состоит из 10000 особей, среди которых имеются 500, 1000 и 2000 гомозигот A 1 A 1 , A 2 A 2 и A 3 A 3 , а гетерозигот A 1 A 2 , A 1 A 3 и A 2 A 3 - 1000, 2500 и 3000 соответственно. Тогда частота гомозигот A 1 A 1 равна P 11 = 500/10000 = 0,05, или 5%. Таким образом мы получаем следующие наблюдаемые частоты гомо- и гетерозигот: P 11 = 0,05, P 22 = 0 ,10, P 33 = 0,20, P 12 = 0,10, P 13 = 0,25, P 23 = 0,30. Еще одним важным понятием популяционной генетики является частота аллеля - его доля среди имеющих аллелей. Обозначим частоту аллеля A i как p i . Поскольку у гетерозиготной особи аллели разные, частота аллеля равна сумме частоты гомозиготных и половине частот гетерозиготных по этому аллелю особей. Это выражается следующей формулой: p i = P ii + 0 , 5 Че j P ij . В приведенном примере частота первого аллеля равна p 1 = P 11 + 0 , 5 Ч (P 12 + P 13 ) = 0 , 225. Соответственно, p 2 = 0 , 300, p 3 = 0 , 475. Соотношения Харди - Вайнберга . При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом: P ii = p i 2 , P ij = 2p i p j . Это называется соотношениями, или законом, Харди - Вайнберга - по имени английского математика Г.Харди и немецкого медика и статистика В.Вайнберга, одновременно и независимо открывших их: первый - теоретически, второй - из данных по наследованию признаков у человека.

Реальные популяции могут значительно отличаться от идеальной, описываемой уравнениями Харди - Вайнберга. Поэтому наблюдаемые частоты генотипов отклоняются от теоретических величин, вычисляемых по соотношениям Харди - Вайнберга. Так, в рассмотренном выше примере теоретические частоты генотипов отличаются от наблюдаемых и составляют

P 11 = 0 , 0506, P 22 = 0 , 0900, P 33 = 0 , 2256, 12 = 0 , 1350, P 13 = 0 , 2138, P 23 = 0 , 2850 . Подобные отклонения можно частично объяснить т.н. ошибкой выборки; ведь в действительности в эксперименте изучают не всю популяцию, а лишь отдельных особей, т.е. выборку. Но главная причина отклонения частот генотипов - несомненно, те процессы, что протекают в популяциях и влияют на их генетическую структуру. Опишем их последовательно. ПОПУЛЯЦИОННО-ГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ Дрейф генов . Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2 : один самец и одна самка. Пусть в исходном поколении самка имеет генотип A 1 A 2 , а самец - A 3 A 4 . Таким образом, в начальном (нулевом) поколении частоты аллелей A 1 , A 2 , A 3 и A 4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A 1 A 3 , A 1 A 4 , A 2 A 3 и A 2 A 4 . Допустим, что самка будет иметь генотип A 1 A 3 , а самец - A 2 A 3 . Тогда в первом поколении аллель A 4 теряется, аллели A 1 и A 2 сохраняют те же частоты, что и в исходном поколении - 0,25 и 0,25, а аллель A 3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A 1 A 2 и A 1 A 2 . В этом случае окажется, что аллель A 3 , несмотря на большую частоту, исчез из популяции, а аллели A 1 и A 2 увеличили свою частоту (p 1 = 0 , 5 , p 2 = 0 , 5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A 1 , либо аллель A 2 ; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A 1 или A 2 . Ситуация могла сложиться и так, что в популяции остался бы аллель A 3 или A 4 , но в рассмотренном случае этого не произошло.

Описанный нами процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно - это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других - другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, - это мутации и миграции.

Мутации . При образовании гамет происходят случайные события - мутации, когда родительский аллель, скажем A 1 , превращается в другой аллель (A 2 , A 3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «… T Ц T ТГГ … », кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет T ЦЦ (см . НАСЛЕДСТВЕННОСТЬ) . Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.

Вероятность, с которой происходит мутация, называется частотой, или темпом, мутирования. Темпы мутирования разных генов варьируют от 10

-4 до 10 -7 на поколение. На первый взгляд, эти величины кажутся незначительными. Однако следует учесть, что, во-первых, геном содержит много генов, а, во-вторых, что популяция может иметь значительную численность. Поэтому часть гамет всегда несет мутантные аллели, и практически в каждом поколении появляется одна или больше особей с мутациями. Их судьба зависит от того, насколько сильно эти мутации влияют на приспособленность и плодовитость. Мутационный процесс ведет к увеличению генетической изменчивости популяций, противодействуя эффекту дрейфа генов. Миграции . Популяции одного вида не изолированы друг от друга: всегда есть обмен особями - миграции. Мигрирующие особи, оставляя потомство, передают следующим поколениям аллели, которых в этой популяции могло вовсе не быть или они были редки; так формируется поток генов из одной популяции в другую. Миграции, как и мутации, ведут к увеличению генетического разнообразия. Кроме того, поток генов, связывающий популяции, приводит к их генетическому сходству. Системы скрещивания . В популяционной генетике скрещивание называют случайным, если генотипы особей не влияют на образование брачных пар. Например, по группам крови скрещивание может рассматриваться как случайное. Однако окраска, размеры, поведение могут сильно влиять на выбор полового партнера. Если предпочтение оказывается особям сходного фенотипа (т.е. со сходными индивидуальными характеристиками), то такое положительное ассортативное скрещивание ведет к увеличению в популяции доли особей с родительским генотипом. Если при подборе брачной пары предпочтение имеют особи противоположного фенотипа (отрицательное ассортативное скрещивание), то в генотипе потомства будут представлены новые сочетания аллелей; соответственно в популяции появятся особи либо промежуточного фенотипа, либо фенотипа, резко отличающегося от фенотипа родителей.

Во многих регионах мира высока частота близкородственных браков (например, между двоюродными и троюродными родственниками). Образование брачных пар на основе родства называют инбридингом. Инбридинг увеличивает долю гомозиготных особей в популяции, поскольку в этом случае высока вероятность того, что родители имеют сходные аллели. С повышением числа гомозигот возрастает и количество больных рецессивными наследственными болезнями. Но инбридинг способствует также большей концентрации определенных генов, что может обеспечить лучшую адаптацию данной популяции.

Отбор . Различия в плодовитости, выживаемости, половой активности и т.п. приводят к тому, что одни особи оставляют больше половозрелых потомков, чем другие - с иным набором генов. Различный вклад особей с разными генотипами в воспроизводство популяции называют отбором.

Изменения нуклеотидов могут влиять, а могут и не влиять на продукт гена - полипептидную цепь и образуемый ею белок. Например, аминокислота серин кодируется шестью разными триплетами - ТЦА, ТЦГ, ТЦТ,

Еще большие различия в приспособленности наблюдаются по генам, определяющим размеры, физиологические признаки и поведение особей; таких генов может быть много. Отбор, как правило, затрагивает их все и может вести к формированию ассоциаций аллелей разных генов.

Генетические параметры популяции . При описании популяций или их сравнении между собой используют целый ряд генетических характеристик. Полиморфизм . Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степень полиморфизма, которая является показателем генетического разнообразия популяции. Гетерозиготность . Важной генетической характеристикой популяции является гетерозиготность - частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие. Коэффициент инбридинга . С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции. Ассоциация генов . Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации. Генетические расстояния . Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями.

Различные популяционно-генетические процессы по-разному влияют на эти параметры: инбридинг приводит к уменьшению доли гетерозиготных особей; мутации и миграции увеличивают, а дрейф уменьшает генетическое разнообразие популяций; отбор изменяет частоты генов и генотипов; генный дрейф увеличивает, а миграции уменьшают генетические расстояния и т.д. Зная эти закономерности, можно количественно исследовать генетическую структуру популяций и прогнозировать ее возможные изменения. Этому способствует солидная теоретическая база популяционной генетики - популяционно-генетические процессы математически формализованы и описаны уравнениями динамики. Для проверки различных гипотез о генетических процессах в популяциях разработаны статистические модели и критерии.

Прилагая эти подходы и методы к исследованию популяций человека, животных, растений и микроорганизмов, можно решить многие проблемы эволюции, экологии, медицины, селекции и др. Рассмотрим несколько примеров, демонстрирующих связь популяционной генетики с другими науками.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И ЭВОЛЮЦИЯ Нередко думают, что основная заслуга Чарлза Дарвина в том, что он открыл явление биологической эволюции. Однако это совсем не так. Еще до издания его книги Происхождение видов (1859) биологи сходились во мнении, что старые виды порождают новые. Разногласия имелись лишь в понимании того, как именно это могло происходить. Наиболее популярной была гипотеза Жана Батиста Ламарка, согласно которой в течение жизни каждый организм изменяется в направлении, соответствующем среде, в которой он живет, и эти полезные изменения («благоприобретенные» признаки) передаются потомкам. При всей своей привлекательности эта гипотеза не прошла проверку генетическими экспериментами.

Напротив, эволюционная теория, разработанная Дарвином, утверждала, что 1) особи одного и того же вида отличаются друг от друга по многим признакам; 2) эти различия могут обеспечить приспособление к разным условиям среды; 3) эти различия наследственны. В терминах популяционной генетики данные положения можно сформулировать так: больший вклад в следующие поколения дают те особи, которые имеют наиболее подходящие для данной среды генотипы. Изменись среда, и начнется отбор генов, более соответствующих новым условиям. Таким образом, из теории Дарвина следует, что

эволюционируют генофонды . Эволюцию можно определить как необратимое изменение генофондов популяций во времени. Совершается она путем накопления мутационных изменений ДНК, возникновения новых генов, хромосомных преобразований и др. Важную роль при этом играет то, что гены обладают способностью удваиваться (дуплицироваться), а их копии - встраиваться в хромосомы. В качестве примера вновь обратимся к гемоглобину. Известно, что гены альфа- и бета-цепи произошли путем дупликации некоего предкового гена, который, в свою очередь, произошел от предка гена, кодирующего белок миоглобин - переносчик кислорода в мышцах. Эволюционно это привело к возникновению гемоглобина - молекулы с тетрамерной структурой, состоящей из четырех полипептидных цепей: двух альфа- и двух бета-. После того как природа «нашла» тетрамерную структуру гемоглобина (у позвоночных), остальные типы структур для транспорта кислорода оказались практически неконкурентоспособными. Затем уже в течение десятков миллионов лет возникали и отбирались лучшие варианты гемоглобина (свои - в каждой эволюционной ветви животных), но в рамках тетрамерной структуры. Сегодняшний отбор по этому признаку у человека стал консервативным: он «охраняет» единственный прошедший миллионы поколений вариант гемоглобина, и любая замена в любой из цепей этой молекулы приводит к болезни. Однако многие виды позвоночных имеют два или более равноценных вариантов гемоглобина - отбор «поощрял» их одинаково. И у человека есть белки, по которым эволюция «оставила» несколько вариантов.

Популяционная генетика позволяет оценить время, когда произошли те или иные события в эволюционной истории. Вновь вернемся к примеру с гемоглобином. Пусть, например, желательно оценить время, когда произошло разделение предковых генов альфа- и бета-цепей и, следовательно, возникла такая система дыхания. Мы анализируем структуру этих полипептидных цепей у человека или какого-либо животного и, сравнивая их, определяем, насколько отличаются друг от друга соответствующие нуклеотидные последовательности. Поскольку в начале своей эволюционной истории обе предковые цепи были идентичными, то, зная скорость замены одного нуклеотида на другой и число различий в сравниваемых цепях, можно узнать время от момента их дупликации. Таким образом, здесь белки выступают в качестве своеобразных «молекулярных часов». Другой пример. Сравнивая гемоглобин или другие белки у человека и приматов, можно оценить, сколько миллионов лет назад существовал наш общий с ними предок. В настоящее время в качестве молекулярных часов используют «безмолвные», не кодирующие белки участки ДНК, менее подверженные внешним воздействиям.

Популяционная генетика позволяет заглянуть в глубь веков и проливает свет на такие события в эволюционной истории человечества, которые невозможно было бы выяснить по современным археологическим находкам. Так, совсем недавно, сравнивая генофонды людей из различных частей света, большинство ученых сошлись на том, что общий предок всех рас современного человека возник примерно 150 тысяч лет назад в Африке, откуда он и расселился по всем континентам через Переднюю Азию. Более того, сопоставляя ДНК людей в разных регионах Земли, можно оценить время, когда популяции человека стали расти в численности. Исследования показывают, что это произошло нескольких десятков тысяч лет назад. Таким образом, в изучении истории человечества популяционно-генетические данные начинают играть столь же важную роль, как и данные археологии, демографии и лингвистики.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И ЭКОЛОГИЯ Обитающие в каждом регионе виды животных, растений и микроорганизмов образуют целостную систему, известную как экосистема. Каждый вид представлен в ней своей, уникальной популяцией. Оценить экологическое благополучие данной территории или акватории позволяют данные, характеризующие генофонд ее экосистемы, т.е. генофонд слагающих ее популяций. Именно он обеспечивает существование экосистемы в данных условиях. Поэтому за изменениями в экологической обстановке региона можно проследить, изучая генофонды популяций обитающих там видов.

Осваивая новые территории, прокладывая нефте- и газопроводы, следует заботиться о сохранении и восстановлении природных популяций. Популяционная генетика уже предложила свои меры, например выделение природных генетических резерватов. Они должны быть достаточно обширными, чтобы содержать основной генофонд растений и животных данного региона. Теоретический аппарат популяционный генетики позволяет определить ту минимальную численность, которая необходима для поддержания генетического состава популяции, чтобы в ней не было т.н. инбридинговой депрессии, чтобы она содержала основные генотипы, присущие данной популяции, и могла воспроизводить эти генотипы. При этом каждый регион должен иметь свои собственные природные генетические резерваты. Нельзя восстанавливать загубленные сосняки Севера Западной Сибири, завозя семена сосны из Алтая, Европы или Дальнего Востока: через десятки лет может оказаться, что «чужаки» генетически плохо приспособлены к местным условиям. Вот почему экологически грамотное промышленное освоение территории должно обязательно включать популяционные исследования региональных экосистем, позволяющие выявить их генетическое своеобразие.

Сказанное относится не только к растениям, но и к животным. Генофонд той или иной популяции рыб эволюционно приспособлен именно к тем условиям, в которых он обитал в течение многих поколений. Поэтому интродукция рыб из одного природного водоема в другой порой приводит к непредсказуемым последствиям. Например, попытки развести сахалинскую горбушу в Каспии оказались безуспешными, ее генофонд оказался не в состоянии «освоить» новое местообитание. Та же горбуша, интродуцированная в Белое море, покинула его и ушла в Норвегию, образовав там временные стада «русского лосося».

Не надо думать, что основными объектами заботы о природе должны быть только экономически ценные виды растений и животных, такие, как древесные породы, пушные звери или промысловые рыбы. Травянистые растения и мхи, мелкие млекопитающие и насекомые - их популяции и их генофонды наравне со всеми другими обеспечивают нормальную жизнь территории. То же относится к микроорганизмам - тысячи их видов населяют почву. Изучение почвенных микробов - задача не только микробиологов, но и популяционных генетиков.

Изменение генофонда популяций при грубых вмешательствах в природу выявляется не сразу. Могут пройти десятилетия, прежде чем станут очевидными последствия в виде исчезновения одних популяций, а за ними - других, связанных с первыми.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И МЕДИЦИНА Один из насущнейших вопросов человечества - как лечить наследственные болезни. Однако до недавнего времени сама постановка такого вопроса казалась фантастической. Речь могла идти только о профилактике наследственных заболеваний в форме медико-генетического консультирования. Опытный врач-генетик, изучая историю болезни пациента и исследуя, сколь часто наследственное заболевание проявлялось среди его близких и дальних родственников, давал заключение о том, может ли у пациента появиться ребенок с такой патологией; и если может, то какова вероятность данного события (например, 1 /2 , 1 /10, или 1 /100). Основываясь на этой информации, супруги сами решали, иметь им ребенка или не иметь.

Бурное развитие молекулярной биологии существенно приблизило нас к заветной цели - лечению наследственных болезней. Для этого прежде всего необходимо найти среди множества генов человека тот, который ответствен за болезнь. Популяционная генетика помогает решить эту сложную задачу.

Известны генетические метки - т.н.

ДНК -маркеры, которые позволяют отметить в длинной нити ДНК, скажем, каждую тысячную или десятитысячную «бусинку». Исследуя больного, его родственников и здоровых лиц из популяции, можно установить, какой из маркеров сцеплен с геном болезни. С помощью специальных математических методов популяционные генетики выявляют тот участок ДНК, в котором расположен интересующий нас ген. После этого в работу включаются молекулярные биологи, которые детально анализируют этот отрезок ДНК и находят в нем дефектный ген. Таким способом картированы гены большинства наследственных болезней. Теперь врачи получили возможность в первые месяцы беременности прямо судить о здоровье будущего ребенка, а родители - решать вопрос, сохранять или не сохранять беременность, если заранее известно, что ребенок родится больным. Более того, уже предпринимаются попытки исправлять допущенные природой ошибки, устранять «поломки» в генах.

С помощью ДНК-маркеров можно не только искать гены болезней. Используя их, проводят своеобразную паспортизацию индивидов. Такая ДНК-идентификация - распространенный вид судебно-медицинской экспертизы, позволяющий определить отцовство, опознать перепутанных в роддоме детей, выявить личность участников преступления, жертв катастроф и военных действий.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И СЕЛЕКЦИЯ Согласно теории Дарвина, отбор в природе направлен только на непосредственную пользу - выжить и размножиться. Например, у рыси окраска шерсти палево-дымчатая, а у льва - песчано-желтая. Окраска, как маскировочная одежда, служит тому, чтобы особь сливалась с местностью. Это позволяет хищникам незаметно подкрадываться к жертве или выжидать. Поэтому хотя цветовые вариации постоянно появляются в природе, дикие кошки с такой «меткой» не выживают. Лишь человек с его вкусовыми пристрастиями создает все условия для жизни домашних кошек самых разнообразных окрасок.

Переходя к оседлому образу жизни, люди уходили от охоты на животных и собирательства растений к их воспроизводству, резко уменьшая свою зависимость от катаклизмов природы. Тысячелетиями размножая особей с нужными признаками и ведя тем самым отбор соответствующих генов из генофондов популяций, люди постепенно создали все те сорта домашних растений и породы животных, что нас окружают. Это был тот же отбор, что проводила миллионами лет природа, но только теперь в роли природы выступил человек, направляемый разумом.

С началом развития популяционный генетики, т.е. с середины 20 в., селекция пошла по научному пути, а именно по пути прогнозирования ответа на отбор и выбора оптимальных вариантов селекционной работы. Например, в скотоводстве племенная ценность каждого животного вычисляется сразу по многим признакам продуктивности, определяемым не только у данного животного, но и у его родственников (матерей, сестер, потомков и др.). Все это сводится в некий общий индекс, учитывающий как генетическую обусловленность признаков продуктивности, так и их экономическую значимость. Это особенно важно при оценке производителей, у которых собственную продуктивность определить невозможно (например, у быков в молочном скотоводстве или у петухов яичных пород). С внедрением искусственного осеменения появилась необходимость в разносторонней популяционной оценке племенной ценности производителей при их использовании в разных стадах с разным уровнем кормления, содержания и продуктивности. В селекции растений популяционный подход помогает количественно оценить генетическую способность линий и сортов давать перспективные гибриды и прогнозировать их приспособленность и продуктивность в разных по климату и почвам регионах.

Таким образом, из чисто академической отрасли знаний, какой она была до недавнего времени, популяционная генетика превращается в науку, решающую многие теоретические и прикладные задачи.

ЛИТЕРАТУРА Тимофеев-Ресовский Н.В., Яблоков А.В., Глотов Н.В. Очерк учения о популяции . М., 1973
Айала Ф., Кайгер Дж. Современная генетика , тт. 1-3, М., 1988
Фогель Ф., Мотульски А. Генетика человека , тт. 1-3. М., 1990