Развитие биологической эволюции. Что такое генная инженерия

Сегодня мы поговорим о том, что такое эволюция в биологии, какое значение она имеет. Конечно, говоря об этой теме, мы не можем оставить без внимания эволюционную теорию Чарльза Дарвина, который предложил ее миру, существующую по сей день.

Итак, что такое эволюция в биологии? Под этим понятием принято понимать постепенные перемены, которые не сильно бросаются в глаза. Но в результате данного процесса появляются и коренные изменения. Эволюция в биологии может привести даже к образованию новых видов живых существ или кардинальному изменению и приспособлению старых. Какое значение имеет эволюция в естествознании? Безусловно, ключевое. Это вы поймете, закончив чтение данной работы.

Эволюция

Сейчас немного поговорим о самом ключевом понятии нашей статьи. Что такое эволюция в биологии? Важно понимать то, что это явление необратимо и напрямую связано с историческим процессом, развитием живой природы. Можно рассматривать эволюцию отдельных частей биосферы или в общем всего живого нашей планеты. Запомните то, что эволюционировать может только живой организм.

Ранее эволюции противопоставляли такое понятие, как «революция». Но в ходе усердного изучения этих двух процессов выяснилось: эволюцию и революцию довольно сложно отличить друг от друга. Почему? Эволюция может длиться миллионы лет или проходить быстро. Так границы между двумя этими процессами сильно размылись.

Некоторые считают, что человек - это результат эволюции, то есть мы произошли от древних обезьян. Эту теорию выдвинул знаменитый ученый Чарльз Дарвин. А теория получила название эволюционной. Верить ей или нет, решает каждый самостоятельно, ведь сейчас существует масса других возможных гипотез. Но раз речь в нашей работе зашла об эволюции, то мы не можем оставить без внимания теорию Дарвина. Предлагаем приступить к ней прямо сейчас.

Теория Дарвина

Чарльз Дарвин впервые смог объяснить человечеству, что такое эволюция в биологии. Упомянем и то, что его теория основывалась на трудах Т. Мальтуса, который представил миру в 1778 году свой «Трактат о народонаселении». Изучив эту работу, Чарльз Дарвин смог сформулировать основные законы, силы, которые движут эволюцией. О чем же работа Т. Мальтуса? Он объяснил, что было бы с нами, если рост населения не сдерживался бы никакими факторами.

Отметим и то, что Дарвин переложил теорию Мальтуса на другие живые системы, его основной вклад в науку - это объяснение того, как происходит эволюция. Он впервые ввел понятие «естественный отбор». Можно упомянуть и то, что еще один ученый (А.Р. Уоллес) смог прийти к такому же выводу. Тогда Дарвин и Уоллес объединились и выступили сообща на заседании в 1858 году с совместным докладом, а уже в 1859 году Ч. Дарвин представил миру труд «Происхождение видов».

Современная теория

Итак, что такое эволюция в биологии, определение по теории Чарльза Дарвина мы уже предоставили. Но существует и современная (ее еще называют синтетической) теория эволюционирования. Предлагаем кратко ее рассмотреть.

Теория неодарвинизма представляет собой обновленную еще в 20 веке теорию Дарвина - Уоллеса. Это получилось в результате обновления и добавления новых данных в областях:

  • генетики;
  • палеонтологии;
  • молекулярной биологии;
  • экологии;
  • этологии.

Почему эту теорию называют синтетической? Именно потому, что она представляет собой синтез основных позиций, представленных Чарльзом Дарвином.

Законы эволюции

  • скорость эволюции неодинакова;
  • образование новых видов происходит у простых форм;
  • отмечены случаи регрессивной эволюции;
  • эволюция происходит благодаря некоторым факторам (мутации, естественный отбор, дрейф генов).

Факторы эволюции

Мы узнали, что такое эволюция в биологии и ее сущность. Давайте теперь поговорим о факторах. Их получили в результате изучения и систематизации всех накопленных знаний, касающихся эволюции. Только так можно увидеть и понять движущие силы, которые позволяют многим видам (менее приспособленным к выживанию) оставаться на нашей планете.

Итак, существует всего три основных фактора:

  • популяционные волны;
  • обособленность группы.

Формы отбора

Говоря об эволюции, мы можем выделить несколько форм естественного отбора:

  • стабилизирующий;
  • движущий;
  • дизруптивный.

Первый вид направлен на поддержание устойчивости конкретного вида. Рассмотрим пример на воробьях. Во время сильной бури было найдено 136 умирающих птиц. 64 из них погибли, так как имели или короткие, или длинные крылья. Особи со средним размером выжили, так как оказались более выносливыми.

Движущий проявляется так: исчезновение конечностей у змей или глаз у пещерных животных, пальцев у копытных и так далее. То есть орган (или его часть), который не нужен животному, попросту исчезает.

Примером дизруптивного отбора могут быть улитки (точнее их окрас). Если почва коричневая, то раковина имеет коричневый или желтый оттенок.

Эволюция — процесс развития, состоящий из постепенных изменений, без резких скачков (в противовес революции). Чаще всего, говоря об эволюции, имеют ввиду биологическую эволюцию.

Биологическая эволюция — необратимое и направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованием экосистем и биосферы в целом. Биологическая эволюция изучается эволюционной биологией.

Существует несколько эволюционных теорий, общим для которых является утверждение, что ныне живущие формы жизни являются потомками других форм жизни, существовавших ранее. Эволюционные теории отличаются объяснением механизмов эволюции. В данный момент наиболее распространённой является т.н. синтетическая теория эволюции, являющаяся развитием теории Дарвина.

Гены, которые передаются потомству, в результате выражения образуют сумму признаков организма (фенотип). При воспроизведении организмов у их потомков появляются новые или изменённые признаки, которые возникают в результате мутации или при переносе генов между популяциями или даже видами. У видов, которые размножаются половым путём, новые комбинации генов возникают при генетической рекомбинации. Эволюция происходит, когда наследственные различия становятся более частыми или редкими в популяции.

Эволюционная биология изучает эволюционные процессы и выдвигает теории для объяснения их причин. Изучение окаменелостей и разнообразия видов живых организмов к середине XIX века убедило большинство учёных, что виды изменяются с течением времени. Однако механизм этих изменений оставался неясен до публикации в 1859 году книги Происхождение видов английского учёного Чарльза Дарвина о естественном отборе как движущей силе эволюции. Теория Дарвина и Уоллеса, в конечном итоге, была принята научным сообществом. В 30-х годах прошлого века идея дарвиновского естественного отбора была объединена с законами Менделя, которые сформировали основу синтетической теории эволюции (СТЭ). СТЭ позволила объяснить связь субстрата эволюции (гены) и механизма эволюции (естественный отбор).

Наследственность

Наследственность, присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность — важнейшее условие существования дифференцированных форм жизни, невозможных без относительного постоянства признаков организмов, хотя оно нарушается изменчивостью — возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин «Наследственность» относят к передаче от одного поколения другому инфекционных начал (так называемая инфекционная наследственность) или навыков обучения, образования, традиций (так называемая социальная, или сигнальная, наследственность). Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственность в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.

Изменчивость

Изменчивость — это разнообразие признаков и свойств у особей и групп особей любой степени родства. Присуща всем живым организмам. Различают изменчивость наследственную и не наследственную, индивидуальную и групповую, качественную и количественную, направленную и ненаправленную. Наследственная изменчивость обусловлена возникновением мутаций, не наследственная — воздействием факторов внешней среды. Явления наследственности и изменчивости лежат в основе эволюции.

Мутация

Мутация — случайно возникшие, стойкие изменения генотипа,затрагивающие целые хромосомы, их части или отдельные гены. Мутации могут быть крупными, хорошо заметными, например отсутствие пигмента (альбинизм), отсутствие оперения у кур, короткопалость и др. Однако чаще всего мутационные изменения — это мелкие, едва заметные уклонения от нормы.

Мутации событие достаточно редкое. Частота возникновения отдельных спонтанных мутаций выражается числом гамет одного поколения, несущих определенную мутацию, по отношению к общему числу гамет.

Мутации возникают, в основном, в результате действия двух причин: спонтанных ошибок репликации последовательности нуклеотидов и действия различных мутагенных факторов, вызывающих ошибки репликации.

Мутации, вызванные действием мутагенов (облучение, химические вещества, температура и др.) , называют индуцированными, в отличие от спонтанных мутаций, происходящих при случайных ошибках действия ферментов, обеспечивающих репликацию, или (и) в результате тепловых колебаний атомов в нуклеотидах.

Типы мутаций. По характеру изменения генетического аппарата мутации делят на геномные, хромосомные и генные, или точковые. Геномные мутации заключаются в изменении числа хромосом в клетках организма. К ним относятся: полиплоидия — увеличение числа наборов хромосом, когда вместо обычных для диплоидных организмов 2 наборов хромосом их может быть 3, 4 и т. д.; гаплоидия — вместо 2 наборов хромосом имеется лишь один; анеуплоидия — одна или несколько пар гомологических хромосом отсутствуют (нуллисомия) или представлены не парой, а лишь одной хромосомой (моносомия) либо, напротив, 3 или более гомологичными партнёрами (трисомия, тетрасомия и т. д.). К хромосомным мутации, или хромосомным перестройкам, относятся: инверсии — участок хромосомы перевёрнут на 180°, так что содержащиеся в нём гены расположены в обратном порядке по сравнению с нормальным; транслокации — обмен участками двух или более негомологичных хромосом; делеции — выпадение значительного участка хромосомы; нехватки (малые делеции) — выпадение небольшого участка хромосомы; дупликации — удвоение участка хромосомы; фрагментации — разрыв хромосомы на 2 части или более. Генные мутации представляют собой стойкие изменения химического строения отдельных генов и, как правило, не отражаются на наблюдаемой в микроскоп морфологии хромосом. Известны также мутации генов, локализованных не только в хромосомах, но и в некоторых самовоспроизводящихся органеллах цитоплазмы (например, в митохондриях, пластидах).

Причины мутаций и их искусственное вызывание. Полиплоидия чаще возникает, когда хромосомы в начале клеточного деления — митоза — разделились, но деления клетки почему-либо не произошло. Искусственно полиплоидию удаётся вызвать, воздействуя на вступившую в митоз клетку веществами, нарушающими цитотомию. Реже полиплоидия бывает следствием слияния 2 соматических клеток или участия в оплодотворении яйцеклетки 2 спермиев. Гаплоидия — большей частью следствие развития зародыша без оплодотворения. Искусственно её вызывают, опыляя растения убитой пыльцой или пыльцой др. вида (отдалённого). Основная причина анеуплоидии — случайное нерасхождение пары гомологичных хромосом при мейозе, в результате чего обе хромосомы этой пары попадают в одну половую клетку или в неё не попадает ни одна из них. Реже возникают анеуплоиды из немногих оказавшихся жизнеспособными половых клеток, образуемых несбалансированными полиплоидами.

Причины хромосомных перестроек и наиболее важной категории мутации — генных — долгое время оставались неизвестными. Это давало повод для ошибочных автогенетических концепций, согласно которым спонтанные генные Мутации возникают в природе якобы без участия воздействий окружающей среды. Лишь после разработки методов количественного учёта генных мутации выяснилась возможность вызывать их различными физическими и химическими факторами — мутагенами.

Рекомбинация

Рекомбинация - перераспределение генетического материала родителей в потомстве, приводящее к наследственной комбинативной изменчивости живых организмов. В случае несцепленных генов (лежащих в разных хромосомах) это перераспределение может осуществляться при свободном комбинировании хромосом в мейозе, а в случае сцепленных генов — обычно путём перекреста хромосом — кроссинговера. Рекомбинация — универсальный биологический механизм, свойственный всем живым системам — от вирусов до высших растений, животных и человека. Вместе с тем в зависимости от уровня организации живой системы процесс Рекомбинация (генетич.) имеет ряд особенностей. Проще всего рекомбинация происходит у вирусов: при совместном заражении клетки родственными вирусами, различающимися одним или несколькими признаками, после лизиса клетки обнаруживаются не только исходные вирусные частицы, но и возникающие с определённой средней частотой частицы-рекомбинанты с новыми сочетаниями генов. У бактерий существует несколько процессов, заканчивающихся рекомбинация: конъюгация, т. е. объединение двух бактериальных клеток протоплазменным мостиком и передача хромосомы из донорской клетки в реципиентную, после чего происходит замена отдельных участков хромосомы реципиента на соответствующие фрагменты донора; трансформация — передача признаков молекулами ДНК, проникающими из среды сквозь клеточную оболочку; трансдукция — передача генетического вещества от бактерии-донора к бактерии-реципиенту, осуществляемая бактериофагом. У высших организмов рекомбинация происходит в мейозе при образовании гамет: гомологичные хромосомы сближаются и устанавливаются бок о бок с большой точностью (т. н. синапсис), затем происходит разрыв хромосом в строго гомологичных точках и перевоссоединение фрагментов крест-накрест (кроссинговер). Результат рекомбинация обнаруживается по новым сочетаниям признаков у потомства. Вероятность кроссинговера между двумя точками хромосом приблизительно пропорциональна физическому расстоянию между этими точками. Это даёт возможность на основании экспериментальных данных по рекомбинация строить генетические карты хромосом, т. е. графически располагать гены в линейном порядке в соответствии с их расположением в хромосомах, и притом в определённом масштабе. Молекулярный механизм рекомбинация детально не изучен, однако установлено, что ферментативные системы, обеспечивающие рекомбинация, принимают участие и в таком важнейшем процессе, как исправление повреждений, возникающих в генетическом материале. После синапсиса вступает в действие эндонуклеаза — фермент, осуществляющий первичные разрывы в цепях ДНК. По-видимому, эти разрывы у многих организмов происходят в структурно детерминированных участках — рекомбинаторах. Далее происходит обмен двойными или одинарными цепями ДНК и в заключение специальные синтетические ферменты — ДНК-полимеразы — заполняют бреши в цепях, а фермент лигаза замыкает последние ковалентные связи. Ферменты эти выделены и изучены лишь у некоторых бактерий, что позволило приблизиться к созданию модели рекомбинация in vitro (в пробирке). Одно из важнейших следствий рекомбинация — образование реципрокного потомства (т. е. при наличии двух аллельных форм генов АВ и ав должны получиться два продукта рекомбинации — Ав и aB в равных количествах). Принцип реципрокности соблюдается, когда рекомбинация происходит между достаточно удалёнными точками хромосомы. При внутригенной рекомбинации это правило часто нарушается. Последнее явление, изученное главным образом на низших грибах, называется генной конверсией. Эволюционное значение рекомбинация заключается в том, что благоприятными для организма часто оказываются не отдельные мутации, а их комбинации. Однако одновременное возникновение в одной клетке благоприятного сочетания из двух мутаций маловероятно. В результате рекомбинации осуществляется сочетание мутаций, принадлежащих двум независимым организмам, и тем самым ускоряется эволюционный процесс.

Механизмы эволюции

Естественный отбор

Существуют два основных эволюционных механизма. Первый — это естественный отбор, то есть процесс, в результате которого наследственные признаки, благоприятные для выживания и размножения, распространяются в популяции, а неблагоприятные становятся более редкими. Это происходит потому, что особи с благоприятными признаками размножаются с большей вероятностью, поэтому больше особей следующего поколения имеют те же признаки. Адаптации к окружающей среде возникают в результате накопления последовательных, мелких, случайных изменений и естественного отбора варианта, наиболее приспособленного к окружающей среде.

Генетический дрейф

Второй основной механизм — это генетический дрейф, независимый процесс случайного изменения в частоте признаков. Генетический дрейф происходит в результате вероятностных процессов, которые обуславливают случайные изменения в частоте признаков в популяции. Хотя изменения в результате дрейфа и селекции в течение одного поколения довольно малы, различие в частотах накапливаются в каждом последующем поколении и со временем приводят к значительным изменениям в живых организмах. Этот процесс может завершиться образованием нового вида. Более того, биохимическое единство жизни указывает на происхождение всех известных видов от общего предка (или пула генов) в результате процесса постепенной дивергенции.

В статье подробно рассмотрим виды эволюции, а также поговорим в целом об этом процессе, стараясь комплексно разобраться в теме. Узнаем о том, как зарождалось учение эволюции, какими идеями оно представлено и какую роль в нём играет вид.

Вступление в тему

Эволюция органического мира представляет собой довольно сложный и длительный процесс, который одновременно проходит на разных уровнях организации живой материи. При этом он всегда затрагивает множество направлений. Так сложилось, что развитие живой природы происходит от низших форм к высшим. Всё простое со временем усложняется и приобретает более интересную форму. В отдельных группах организмов развиваются адаптационные навыки, которые позволяют живым существам лучше существовать в своих конкретных условиях. Например, у некоторых водных животных появились в результате эволюции перепонки между пальцами.

Три направления

Прежде чем говорить о видах эволюции, рассмотрим три главных направления, выделенные весомыми российскими учеными И. Шмальгаузеном и А. Северцовым. По их мнению, существует ароморфоз, идиоадаптация, дегенерация.

Ароморфоз

Ароморфоз, или арогенез, - это серьёзные эволюционные изменения, которые ведут в целом к усложнению структуры и функций каких-то организмов. Данный процесс позволяет принципиально менять некоторые стороны жизни, например места обитания. Также ароморфоз способствует повышению конкурентоспособности конкретных организмов к выживанию в окружающей среде. Главная суть ароморфозов заключается в покорении новых адаптационных зон. Именно поэтому такие процессы происходят довольно редко, но если уж они случаются, то носят принципиальный характер и оказывают влияние на всё дальнейшее развитие.

При этом надо разобраться с таким понятием, как адаптационный уровень. Это определенная зона места обитания с характерным климатом и экологическими условиями, которые свойственны для определенной группы организмов. Например, для птиц адаптивной зоной является воздушное пространство, которое защищает их от хищников и позволяет осваивать новые способы охоты. Кроме того, перемещение в воздухе дает возможность преодолевать крупные препятствия и осуществлять дальние миграции. Именно поэтому полёт по праву считается важным эволюционным ароморфозом.

Наиболее яркие ароморфозы в природе - это многоклеточность и половой способ размножения. Благодаря многоклеточности, начался процесс усложнения анатомии и морфологии практически всех организмов. Благодаря половому размножению значительно расширились адаптационные способности.

У животных такие процессы поспособствовали созданию более эффективных способов питания и улучшения обмена веществ. При этом наиболее значимым ароморфозом в животном мире считается теплокровность, благодаря которой очень повысилась выживаемость в разных условиях.

У растений подобные процессы проявляются в появлении общей и проводящей систем, которые соединяют все их части в единое целое. Благодаря этому повышается эффективность опыления.

Для бактерий ароморфозом является автотрофный способ питания, благодаря которому они смогли покорить новую адаптационную зону, которая может быть лишена органических источников питания, а бактерии всё равно на ней выживут.

Идиоадаптация

Без этого процесса невозможно представить эволюцию биологических видов. Он подразумевает конкретные адаптации к специфическим условиям окружающей среды. Для того чтобы лучше понять, что это за процесс, давайте немного порассуждаем. Идиоадаптация — это небольшие изменения, которые существенно улучшают жизнь организмов, но при этом не выводят их на новый уровень организации. Рассмотрим данную информацию на примере птиц. Крыло является следствием процесса ароморфоза, а вот форма крыльев и способы полета - это уже идиоадаптации, которые не меняют анатомического строения птиц, но при этом отвечают за их выживание в определенной среде. К таким процессам еще можно отнести окрас животных. Из-за того что они значительно влияют лишь на группу организмов, их считают признаками видов и подвидов.

Дегенерация, или катагенез

Макро- и микроэволюция

А теперь перейдем непосредственно к теме нашей статьи. Какие же бывают разновидности этого процесса? Это микро- и макроэволюция. Поговорим о них подробнее. Макроэволюция представляет собой процесс формирования крупнейших систематических единиц: видов, новых семейств и так далее. Основные движущие силы макроэволюции кроются в микроэволюции.

Во-первых, это наследственность, естественный отбор, изменчивость и репродуктивная изоляция. Дивергентный характер свойственен для микро- и макроэволюции. При этом данные понятия, о которых мы говорим сейчас, получали много разных интерпретаций, но до сих пор окончательного понимания не достигнуто. Одна из самых популярных заключается в том, что макроэволюция является изменением системного характера, которое не требует большого количества времени.

Однако, что касается изучения этого процесса, то он занимает очень много времени. Более того, макроэволюция носит глобальный характер, поэтому освоить всё её многообразие очень сложно. Важным методом изучения этого направления является компьютерное моделирование, которое особенно активно начало развиваться в 1980-х годах.

Виды доказательств эволюции

А теперь поговорим о том, какие существуют доказательства макроэволюции. Во-первых, это сравнительно-анатомическая система умозаключений, которая основывается на том, что у всех животных единый тип строения. Именно это указывает на то, что все мы имеем общее происхождение. Здесь большое внимание уделяется гомологичным органам, также атавизмам. Атавизмы человека — это возникновение хвоста, многососковость и сплошной волосяной покров. Важное доказательство макроэволюции заключается в наличии рудиментарных органов, которые больше не нужны человеку и постепенно исчезают. Рудименты - это аппендикс, волосяной покров и остатки третьего века.

Теперь рассмотрим эмбриологические доказательства, которые заключаются в том, что все позвоночные животные имеют похожие зародыши на ранних стадиях развития. Конечно, со временем это сходство становится всё менее заметным, так как начинают преобладать характерные черты для определённого вида.

Палеонтологические доказательства процесса эволюции видов заключаются в том, что по остаткам некоторых организмов можно исследовать переходные формы других вымерших существ. Благодаря ископаемым останкам ученые могут узнавать о том, что существовали переходные формы. Например, такая форма жизни существовала между пресмыкающимися и птицами. Также благодаря палеонтологии ученые смогли построить филогенетические ряды, в которых можно четко отследить последовательность сменяющих друг друга видов, развивающихся в процессе эволюции.

Биохимические доказательства основываются на том, что у всех живых организмов на земле единообразный химический состав и генетический код, что также следует отметить. Более того, мы все схожи по энергетическому и пластическому обмену, а также ферментативному характеру некоторых процессов.

Биогеографические доказательства строятся на том, что процесс эволюции отлично отражается в характере распространения животных и растений по поверхности Земли. Так, учёные условно поделили массив планеты на 6 географических зон. Подробно рассматривать их мы здесь не будем, но заметим то, что наблюдается очень тесная связь между континентами и родственными видами живых организмов.

Благодаря макроэволюции мы можем понимать, что все виды произошли путем эволюции от ранее живших организмов. Таким образом раскрывается суть самого процесса развития.

Преобразования на внутривидовом уровне

Микроэволюция подразумевает под собой мелкие изменения в аллелях в популяции на протяжении поколений. Также можно сказать, что эти преобразования происходят на внутривидовом уровне. Причины кроются в мутационных процессах, искусственном и естественном дрейфе и переносе генов. Все эти изменения приводят к видообразованию.

Мы рассмотрели основные виды эволюции, но ещё не знаем, что микроэволюция делится на некоторые ветви. Во-первых, это популяционная генетика, благодаря которой производятся математические расчёты, необходимые для изучения многих процессов. Во-вторых, это экологическая генетика, которая позволяет наблюдать за процессами развития в действительности. Эти 2 вида эволюции (микро- и макро-) имеют огромное значение и вносят свой определенный вклад в целом в процессы развития. Стоит заметить, что их часто противопоставляют друг другу.

Эволюция современных видов

Для начала заметим, что это постоянный процесс. Другими словами, он никогда не прекращается. Все живые организмы эволюционируют с разной скоростью. Однако проблема состоит в том, что некоторые животные живут очень долго, поэтому заметить какие-то изменения очень сложно. Чтобы их отследить, должны пройти сотни или даже тысячи лет.

В современном мире происходит активная эволюция африканских слонов. Правда, при содействии человека. Так, у этих животных быстро уменьшается длина бивня. Дело в том, что охотники всегда охотились на слонов, которые обладали массивными бивнями. Одновременно с этим другие особи интересовали их гораздо меньше. Таким образом, у них увеличивались шансы на выживание, а также на передачу своих генов другим поколениям. Именно поэтому в течение нескольких десятилетий постепенно отмечалось уменьшение длины бивней.

Очень важно понимать, что отсутствие внешних признаков ещё не означает прекращение процесса эволюции. Например, очень часто разные исследователи ошибаются по поводу кистеперой рыбы латимерии. Ходит мнение, что она не эволюционировала миллионы лет, но это не так. Добавим, что на сегодняшний день латимерия является единственным живым представителем отряда целакантообразных. Если сравнить первых представителей этого вида и современных особей, то можно найти множество существенных различий. Единственная схожая черта заключается во внешних признаках. Именно поэтому очень важно комплексно смотреть на эволюцию, не судить о ней исключительно по внешним признакам. Интересно, что современная латимерия имеет больше схожих черт с селёдкой, чем со своим прародителем целакантом.

Факторы

Как мы знаем, виды произошли путем эволюции, но какие факторы этому способствовали? Во-первых, наследственная изменчивость. Дело в том, что различные мутации и новые комбинации генов создают базу для наследственного разнообразия. Заметим: чем активнее мутационный процесс, тем более эффективным будет естественный отбор.

Второй фактор - это случайное сохранение признаков. Чтобы уяснить суть этого явления, давайте разберёмся с такими понятиями, как дрейф генов и популяционные волны. Последние представляют собой колебания, которые происходят периодами и влияют на численность популяции. Например, каждые четыре года зайцев становится очень много, а сразу после этого их численность резко падает. Но что же такое дрейф генов? Здесь подразумевается сохранение или исчезновение каких-либо признаков в случайном порядке. То есть, если в результате каких-то событий популяция сильно уменьшается, то некоторые признаки будут сохраняться полностью или частично в хаотичном порядке.

Третий фактор, который мы рассмотрим — это борьба за существование. Её причина кроется том, что рождается очень много организмов, но лишь часть из них способна выжить. Более того, для всех не хватит пищи и территорий. В целом понятие борьбы за существование можно описать как особые взаимоотношения организма с окружающей средой и другими особями. При этом существует несколько форм борьбы. Она может быть внутривидовой, которая происходит между особями одного и того же вида. Вторая форма - межвидовая, когда за выживание борются представители разных видов. Третья форма заключается в борьбе с условиями окружающей среды, когда животным необходимо приспосабливаться к ним или же погибать. При этом по праву самой жестокой считается борьба внутри видов.

Теперь мы знаем, что роль вида в эволюции огромна. Именно с одного представителя может начаться мутация или дегенерация. Однако эволюционный процесс регулируется сам по себе, так как действует закон естественного отбора. Так, если новые признаки будут неэффективны, то особи, имеющие их, рано или поздно погибнут.

Рассмотрим еще одно важное понятие, которое характерно для всех движущих видов эволюции. Это изоляция. Данный термин подразумевает накопление определенных различий между представителями одной популяции, которая долгое время была изолирована друг от друга. В итоге это может привести к тому, что особи просто не смогут между собой скрещиваться, таким образом появится два совершенно разных вида.

Антропогенез

Теперь поговорим о видах людей. Эволюция - процесс, характерный для всех живых организмов. Часть биологической эволюции, которая привела к появлению человека, называется антропогенезом. Благодаря этому произошло отделение человеческого вида от человекообразных обезьян, млекопитающих и гоминид. Какие мы знаем виды людей? Эволюционная теория делит их на австралопитеков, неандертальцев и т. д. Характеристики каждого из этих видов знакомы нам ещё со школьной скамьи.

Вот мы и ознакомились с основными видами эволюции. Биология порой может рассказать очень много о прошлом и настоящем. Именно поэтому к ней стоит прислушиваться. Заметим: некоторые ученые считают, что следует выделять 3 вида эволюции: макро-, микро- и эволюцию человека. Однако такие мнения единичны и субъективны. В данном материале мы представили вниманию читателя 2 основных вида эволюции, благодаря которым развивается всё живое.

Подводя итоги статьи, скажем о том, что эволюционный процесс — настоящее чудо природы, которое само регулирует и координирует жизнь. В статье мы рассмотрели основные теоретические понятия, но на практике всё гораздо интереснее. Каждый биологический вид представляет собой уникальную систему, способную саморегулироваться, приспосабливаться и эволюционировать. В этом и состоит прелесть природы, которая позаботилась не только о созданных видах, но и о тех, в которые они могут мутировать.

Потомство живых существ очень похоже на родителей. Однако если среда обитания живых организмов меняется, они тоже могут существенно измениться. К примеру, если климат постепенно становится холоднее, то некоторые виды могут от поколения к поколению обрастать все более густой шерстью. Этот процесс называется эволюцией . За миллионы лет эволюции мелкие изменения, накапливаясь, могут приводить к возникновению новых видов растений и животных, резко отличающихся от своих предков.

Как происходит эволюция?

В основе эволюции лежит естественный отбор. Он происходит так. Все животные или растения, принадлежащие к одному виду, все же слегка отличаются друг от друга. Некоторые из этих отличий позволяют их обладателям лучше приспосабливаться к условиям жизни, нежели их сородичам. Например, у какого-то оленя особенно быстрые ноги, и ему каждый раз удается убежать от хищника. У такого оленя больше шансов выжить и обзавестись потомством, а способность быстро бегать может передаться его детенышам, или, как говорят, унаследоваться ими.

Эволюция создала бесчисленное множество способов приспособления к трудностям и опасностям жизни на Земле. Например, семена конского каштана со временем приобрели оболочку, покрытую острыми колючками. Колючки защищают семя, когда оно падает с дерева на землю.

Какова скорость эволюции?


Прежде у этих бабочек были светлые крылышки. Они прятались от врагов на стволах деревьев с такой же светлой корой. Однако около 1% этих бабочек имели темные крылышки. Естественно, птицы сразу их замечали и, как правило, съедали раньше других

Обычно эволюция протекает очень медленно. Но бывают случаи, когда какой-либо вид животных претерпевает стремительные изменения и затрачивает на это не тысячи и миллионы лет, а гораздо меньше. К примеру, некоторые бабочки за последние двести лет изменили свою окраску, чтобы приспособиться к новы условиям жизни в тех районах Европы, где возникло множество промышленных предприятий.

Около двухсот лет назад в Западной Европе начали строить заводы, работающие на угле. Дым из заводских труб содержал сажу, которая оседала на стволах деревьев, и они чернели. Теперь оказались заметнее светлые бабочки. А немногие прежде бабочки с темной окраской крылышек выжили, ибо птицы их уже не замечали. От них произошли другие бабочки с такими же темными крылышками. И теперь большинство бабочек этого вида, обитающих в промышленных районах, имеют темные крылышки.

Почему некоторые виды животных вымирают?

Некоторые живые существа неспособны эволюционировать, когда среда их обитания резко изменяется, и в результате вымирают. Скажем, огромные волосатые животные, похожие на слонов — мамонты, скорее всего, вымерли оттого, что климат на Земле в ту пору стал контрастнее: летом слишком жарко, а зимой слишком холодно. К тому же их численность сократилась из-за усиленной охоты на них первобытного человека. А вслед за мамонтами вымерли и саблезубые тигры — ведь их громадные клыки были приспособлены к охоте лишь на крупных животных вроде мамонтов. Более мелкие животные были для саблезубых тигров недоступны, и, оставшись без добычи, они исчезли с лица нашей планеты.

Откуда мы знаем, что человек тоже эволюционировал?

Большинство ученых полагает, что человек произошел от живших на деревьях животных, похожих на современных обезьян. Доказательством этой теории служат некоторые черты строения наших тел, позволяющие, в частности, предположить, что когда-то наши предки были вегетарианцами и питались только плодами, кореньями и стеблями растений.

У основания вашего позвоночника есть костное образование — копчик. Это все, что осталось от хвоста. Большая часть волос, покрывающих ваше тело, представляет собой лишь мягкий пушок, но у наших предков волосяной покров был гораздо гуще. Каждый волосок снабжен специальным мускулом и встает дыбом, когда вы мерзнете. Так же и у всех млекопитающих с волосатой шкурой: она удерживает воздух, который не дает теплу животного уйти.

У многих взрослых людей есть широкие крайние зубы — их называют «зубы мудрости». Теперь в этих зубах нет никакой необходимости, но в свое время наши предки пережевывали ими жесткую растительную пищу, которой питались. Аппендикс представляет собой маленькую трубочку-отросток, связанную с кишечником. Наши отдаленные предки с его помощью переваривали растительную пищу, плохо усваиваемую организмом. Теперь он больше не нужен и постепенно становится все меньше и меньше. У многих травоядных животных — к примеру, кроликов — аппендикс развит очень хорошо.

Могут ли люди управлять эволюцией?

Люди управляют эволюцией некоторых животных вот уже более 10000 лет. Например, многие современные породы собак, по всей вероятности, произошли от волков, стаи которых бродили около стойбищ древних людей. Постепенно те из них, что стали жить вместе с людьми, эволюционировали в новый вид животных, то есть стали собаками. Затем люди начали специально выращивать собак для определенных целей. Это называется селекцией. В результате сегодня в мире насчитывается свыше 150 различных пород собак.

  • Собак, которых можно было обучить разным командам, вроде этой английской овчарки, выращивали для того, чтобы пасти скот.
  • Собак, которые умели быстро бегать, использовали для преследования дичи. У этой борзой мощные ноги, и она бежит огромными прыжками.
  • Собак с хорошим нюхом выводили специально для выслеживания дичи. Эта гладкошерстная такса может разрывать кроличьи норы.

Через естественный отбор, как правило, протекает очень медленно. Селективный отбор позволяет резко ускорить ее.

Что такое генная инженерия?

В 70-е гг. XX в. ученые изобрели способ изменения свойств живых организмов вмешательством в их генетический код. Эту технологию называют генной инженерией. Гены несут в себе своеобразный биологический шифр, содержащийся в каждой живой клетке. Он и определяет размеры и внешний вид каждого живого существа. С помощью генной инженерии можно выводить растения и животных, которые, скажем, быстрее растут или менее восприимчивы к какому-либо заболеванию

В процессе исторического развития одни виды вымирают, другие изменяются и дают начало новым видам. Что же собой представляют виды? Существуют ли виды реально в природе?

Впервые термин "вид" ввел английский ботаник Джон Рей (1628- 1705). Шведский ботаник К. Линней рассматривал вид в качестве основной систематической единицы. Он не был сторонником эволюционных воззрений и считал, что виды со временем не изменяются.

Ж. Б. Ламарк отмечал, что различия между некоторыми видами очень незначительны, и в этом случае выделить виды довольно сложно. Он сделал вывод о том, что виды в природе не существуют, а систематика придумана человеком для удобства. Реально существует только особь. Органический мир представляет собой совокупность особей, связанных между собой родственны ми узами.

Как видно, взгляды Линнея и Ламарка на реальное существование вида были прямо противоположными: Линней считал, чтo виды существуют, они неизменны; Ламарк отрицал реальное существование видов в природе.

В настоящее время общепринята точка зрения Ч. Дарвина: виды реально существуют в природе, но постоянство их относительно; виды возникают, развиваются, а затем либо исчезают, либо изменяются, порождая новые виды.

Вид - это надорганизменная форма существования живой природы. Он представляет собой совокупность морфологически и физиологически сходных особей, свободно между собой скрещивающихся и дающих плодовитое потомство, занимающих определенный ареал и обитающих в сходных экологических условиях. Виды различаются по многим критериям. Критерии, по которым особи относятся к одному виду, представлены в таблице.

Критерии вида

При определении принадлежности особи к какому-либо виду нельзя ограничиваться лишь одним критерием, а необходимо использовать всю совокупность критериев. Так, не возможно ограничиться только морфологическим критерием , поскольку особи одного вида могут различаться внешне. Например, у многих птиц - воробьев, снегирей, фазанов самцы внешне значительно отличаются от самок.

В природе у животных широко распространен альбинизм, при котором в клетках отдельных особей в результате мутации нарушается синтез пигмента. Животные с такими мутациями имеют белую окраску. Глаза у них красные, потому что в радужной оболочке нет пигмента, и сквозь нее просвечивают кровеносные сосуды. Несмотря на внешние отличия, такие особи, например белые вороны, мыши, ежи, тигры, относятся к своим видам, а не выделяются в самостоятельные виды.

В природе существуют внешне почти неразличимые виды-двойники. Так, раньше малярийным комаром называли фактически шесть видов, похожих внешне, но не скрещивающихся между собой и различающихся по другим критериям. Однако из них только один вид питается кровью человека и разносит малярию.

Процессы жизнедеятельности у разных видов часто протекают очень сходно. Это говорит об относительности физиологического критерия . Например, у некоторых видов арктических рыб интенсивность обмена веществ такая же, как и у рыб, обитающих в тропических водах.

Нельзя использовать и один молекулярно-биологический критерий , так как многие макромолекулы (белки и ДНК) обладают не только видовой, но и индивидуальной специфичностью. Поэтому по биохимическим показателям не всегда можно определить, к одному или разным видам относятся особи.

Генетический критерий также не универсален. Во-первых, у разных видов число и даже форма хромосом могут быть одинаковыми. Во-вторых, в одном виде могут быть особи с разным числом хромосом. Так, у одного вида долгоносика имеются диплоидные (2п), триплоидные (Зп), тетраплоидные (4п) формы. В-третьих, иногда особи разных видов могут скрещиваться и давать плодовитое потомство. Известны гибриды волка и собаки, яка и крупного рогатого скота, соболя и куницы. В царстве растений межвидовые гибриды встречаются довольно часто, а иногда бывают и более отдаленные межродовые гибриды.

Нельзя считать универсальным и географический критерий , так как ареалы многих видов в природе совпадают (например,ареал даурской лиственницы и душистого тополя). Кроме того, существуют виды-космополиты, которые распространены повсеместно и не имеют четко ограниченного ареала (некоторые виды сорных растений, комаров, мышей). Ареалы некоторых быстро расселяющихся видов, таких, как домовая муха, изменяются. У многих перелетных птиц различаются ареалы гнездовий и зимовки. Экологический критерий не является универсальным, так как в пределах одного ареала многие виды обитают в очень разных природных условиях. Так, многие растения (например, пырей ползучий, одуванчик) могут жить и в лесу, и на пойменных лугах.

Виды реально существуют в природе. Они относительно постоянны. Виды можно различить по морфологическому, молекулярно-биологическому, генетическому, экологическому, географическому, физиологическому критериям. При определении принадлежности особи к тому или иному виду следует учитывать не один критерий, а весь их комплекс.

Вам известно, что вид состоит из популяций. Популяция представляет собой группу морфологически сходных особей одного вида, свободно скрещивающихся между собой и занимающих определенное место обитания в ареале вида.

Для каждой популяции характерен свой генофонд - совокупность генотипов всех особей популяции. Генофонды разных популяций даже одного вида могут различаться.

Процесс образования новых видов начинается внутри популяции, то есть популяция является элементарной единицей эволюции. Почему же именно популяцию, а не вид или отдельную особь рассматривают как элементарную единицу эволюции?

Особь не может эволюционировать. Она может изменяться, приспосабливаясь к условиям внешней среды. Но эти изменения не эволюционные, так как они не передаются по наследству. Вид, как правило, неоднороден и состоит из ряда популяций. Популяция относительно самостоятельна и может длительное время существовать вне связи с другими популяциями вида. В популяции протекают все эволюционные процессы: у особей возникают мутации, между особями происходит скрещивание, действуют борьба за существование и естественный отбор. В результате генофонд популяции со временем изменяется, и она становится родоначальником нового вида. Именно поэтому элементарная единица эволюции - популяция, а не вид.

Рассмотрим закономерности на следования признаков в популяциях разных типов. Эти закономерности различны для самооплодотворяющихся и раздельнополых организмов. Самооплодотворение особенно часто наблюдается у растений. У самоопыляющихся растений, например гороха, пшеницы, ячменя, овса, популяции состоят из так называемых гомозиготных линий. Чем объясняется их гомозиготность? Дело в том, что при самоопылении увеличивается доля гомозигот в популяции, а доля гетерозигот сокращается.

Чистая линия - это потомки одной особи. Она представляет собой совокупность самоопыляющихся растений.

Начало изучения генетики популяций было положено в 1903 г датским ученым В. Иоганнсеном. Он исследовал популяцию самоопыляемого растения фасоли, легко дающей чистую линию - группу потомков отдельной особи, генотипы которых идентичны.

Иоганнсен взял семена одного сорта фасоли и определил изменчивость одного признака - массы семени. Оказалось, что она варьирует от 150 мг до 750 мг. Ученый высеял отдельно две группы семян: массой от 250 до 350 мг и массой от 550 до 650 мг. Средняя масса семени вновь выросших растений составила в легкой группе 443,4 мг, в тяжелой - 518 мг. Иоганнсен сделал вывод, что исходный сорт фасоли состоит из генетически различных растений.

В течение 6-7 поколений ученый вел отбор семян тяжелых и легких с каждого растения, то есть про водил отбор в чистых линиях. В результате он пришел к выводу, что отбор в чистых линиях не дал сдвига ни в сторону легких, ни в сторону тяжелых семян, значит в чистых линиях отбор не эффективен. А изменчивость массы семян внутри чистой линии является модификационной, ненаследственной и возникает под воздействием условий среды.

Закономерности наследования признаков в популяциях раздельно полых животных и перекрестноопыляемых растений были установлены независимо друг от друга английским математиком Дж Харди и немецким врачом В. Вайнбергом в 1908-1909 гг. Эта закономерность, получившая название закона Харди - Вайнберга, отражает зависимость между частотами аллелей и генотипов в популяциях. Данный за кон объясняет, каким образом в популяции сохраняется генетическое равновесие, то есть число особей с доминантными и рецессивными при знаками остается на определенном уровне.

Согласно этому закону, частоты доминантных и рецессивных аллелей в популяции будут оставаться постоянными из поколения в поколение при наличии определенных условий: высокой численности особей в популяции; свободном их скрещивании; отсутствии отбора и миграции особей; одинаковой численности особей с разными генотипами.

Нарушение хотя бы одного из этих условий ведет к вытеснению одного аллеля (например, А) другим (а). Под действием естественного отбора, популяционных волн и других факторов эволюции особи с доминантным аллелем А будут вытеснять особи с рецессивным аллелем а.

В популяции может измениться соотношение особей с разными генотипами. Предположим, что генетический состав популяции был таким: 20% АА, 50% Аа, 30% аа. Под воздействием факторов эволюции он может оказаться следующим: 40% АА, 50% Аа, 10% аа. Используя закон Харди - Вайнберга, можно вычислить частоту встречаемости любого доминантного и рецессивного гена в популяции, а также любого генотипа.

Популяция - элементарная единица эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди - Вайнберга.

В соответствии с законом Харди - Вайнберга при относительно постоянных условиях частота аллелей в популяции остается неизменной из поколения в поколение. В этих условиях популяция находится в состоянии генетического равновесия, в ней не происходят эволюционные изменения. Однако в природе нет идеальных условий. Под влиянием факторов эволюции - мутационного процесса, изоляции, естественного отбора и др. - генетическое равновесие в популяции постоянно нарушается, происходит элементарное эволюционное явление - изменение генофонда популяции. Рассмотрим действие различных факторов эволюции.

Один из главных факторов эволюции - мутационный процесс. Мутации были открыты в начале XX в. голландским ботаником и генетиком Де Фризом (1848-1935).

Главной причиной эволюции он считал именно мутации. В то время были известны только крупные мутации, затрагивающие фенотип. Поэтому Де Фриз полагал, что виды возникают в результате крупных мутаций сразу, скачкообразно, без естественного отбора.

Дальнейшие исследования показали, что многие крупные мутации вредны. Поэтому многие ученые считали, что мутации не могут служить материалом для эволюции.

Лишь в 20-х гг. нашего столетия отечественные ученые С. С. Четвериков (1880- 1956) и И. И. Шмальгаузен (1884-1963) показали роль мутаций в эволюции. Было установлено, что любая природная популяция насыщена, как губка, разно образными мутациями. Чаще всего мутации рецессивны, находятся в гетерозиготном состоянии и не проявляются фенотипически. Именно эти мутации и служат генетической ос новой эволюции. При скрещивании гетерозиготных особей эти мутации у потомков могут переходить в гомозиготное состояние. Отбор из поколения в поколение сохраняет особей с полезными мутациями. Полезные мутации сохраняются естественным отбором, вредные - накапливаются в популяции в скрытом виде, создавая резерв изменчивости. Это приводит к изменению генофонда популяции.

Накоплению наследственных различий между популяциями способствует изоляция , благодаря которой между особями разных популяций не происходит скрещивания, а значит, и обмена генетической ин формацией.

В каждой популяции благодаря естественному отбору накапливаются определенные полезные мутации. Через несколько поколений изолированные популяции, обитающие в разных условиях, будут различаться по ряду признаков.

Широко распространена пространственная , или географическая изоляция , когда популяции разделены различными преградами: реками, горами, степями и т. п. Например, даже в близкорасположенных реках обитают разные популяции рыб одного и того же вида.

Различают также экологическую изоляцию , когда особи разных популяций одного вида предпочитают разные места и условия обитания. Так, в Молдавии у желтогорлой лесной мыши образовались лесные и степные популяции. Особи лесных популяций более крупные, пи таются семенами древесных пород, а особи степных популяций - семенами злаков.

Физиологическая изоляция возникает в том случае, когда у особей разных популяций созревание половых клеток происходит в разные сроки. Особи таких популяций не могут скрещиваться. Например, в озере Севан обитают две популяции форели, нерест которых происходит в разные сроки, поэтому они не скрещиваются между собой.

Существует также поведенческая изоляция . Брачное поведение особей разных видов различается. Это препятствует их скрещиванию. Механическая изоляция связана с различиями в строении органов размножения.

Изменение частот аллелей в популяциях может происходить не только под влиянием естественного отбора, но и независимо от него. Частота аллеля может измениться случайным образом. Например, преждевременная гибель особи - единственной обладательницы какого-либо аллеля приведет к исчезновению этого аллеля в популяции. Это явление получило название дрейфа генов .

Важным источником дрейфа генов являются популяционные волны - периодические значительные изменения численности особей популяции. Численность особей изменяется из года в год и зависит от многих факторов: количества пищи, погодных условий, численности хищников, массовых заболеваний и др. Роль популяционных волн в эволюции была установлена С. С. Четвериковым, который показал, что изменение численности особей в популяции влияет на эффективность естественного отбора. Так, при резком сокращении численности популяции могут случайно сохраниться особи с определенным генотипом. Например, в популяции могут сохраниться особи с такими генотипами: 75% Аа, 20% АА, 5% аа. Наиболее многочисленные генотипы, в данном случае Аа, будут определять генный состав популяции до следующей "волны".

Дрейф генов обычно снижает генетическую изменчивость в популяции, главным образом в результате утраты редко встречающихся аллелей. Этот механизм эволюционных изменений особенно эффективен в небольших популяциях. Однако только естественный отбор на основе борьбы за существование способствует сохранению особей с определенным генотипом, соответствующим среде обитания.

Элементарное эволюционное явление - изменение генофонда популяции происходит под влиянием элементарных факторов эволюции - мутационного процесса, изоляции, дрейфа генов, естественного отбора. Однако дрейф генов, изоляция и мутационный процесс не определяют направленности процесса эволюции, то есть выживания особей с определенным, соответствующим среде обитания генотипом. Единственным направляющим фактором эволюции является естественный отбор.

Основные положения эволюционного учения Ч. Дарвина.

  1. Наследственная изменчивость - основа эволюционного процесса;
  2. Стремление к размножению и ограниченность средств жизни;
  3. Борьба за существование - основной фактор эволюции;
  4. Естественный отбор как результат наследственной изменчивости и борьбы за существование.

ФОРМЫ ЕСТЕСТВЕННОГО ОТБОРА

ФОРМА
ОТБОРА
ДЕЙСТВИЕ НАПРАВЛЕННОСТЬ РЕЗУЛЬТАТ ПРИМЕРЫ
Движущий При изменении условий существования организмов В пользу особей, имеющих отклонения от средней нормы Возникает новая средняя форма, более соответствующая изменившимся условиям Возникновение у насекомых устойчивости к ядохимикатам; распространение темноокрашенных бабочек березовой пяденицы в условиях потемнения коры берез от постоянного задымления
Стабилизи
рующий
В неизменных, постоянных условиях существования Против особей с возникающими крайними отклонениями от средней нормы выраженности признака Сохранение и укрепление средней нормы проявления признака Сохранение у насекомоопыляемых растений размеров и формы цветка (цветки должны соответствовать форме и величине тела насекомогоопылителя, строению его хоботка)
Дизруптив
ный
В изменяющихся условиях жизни В пользу организмов, имеющих крайние отклонения от средней выраженности признака Образование новых средних норм вместо прежней, переставшей соответствовать условиям жизни При частых сильных ветрах на океанических островах сохраняются насекомые с хорошо развитыми или с рудиментарными крыльями

ВИДЫ ЕСТЕСТВЕННОГО ОТБОРА

Задачи и тесты по теме "Тема 14. "Эволюционное учение"."

  • Проработав эти темы, Вы должны уметь:

    1. Сформулировать своими словами определения: эволюция, естественный отбор, борьба за существование, адаптация, рудимент, атавизм, идиоадаптация, биологический прогресс и регресс.
    2. Кратко описать, каким образом та или иная адаптация сохраняется отбором. Какую роль играют в этом гены, генетическая изменчивость, частота генов, естественный отбор.
    3. Объяснить, почему в результате отбора не образуется популяция идентичных, безупречно адаптированных организмов.
    4. Сформулировать, что такое генетический дрейф; привести пример ситуации, в которой он играет важную роль, и объяснить, почему его роль особенно велика в небольших популяциях.
    5. Описать два способа возникновения видов.
    6. Сравнивать естественный и искусственный отбор.
    7. Кратко перечислить ароморфозы в эволюции растений и позвоночных, идиоадаптация в эволюции птиц и млекопитающих, покрытосеменных растений.
    8. Назвать биологические и социальные факторы антропогенеза.
    9. Сравнивать эффективность потребления растительной и животной пищи.
    10. Кратко описать черты древнейшего, древнего, ископаемого человека, человека современного типа.
    11. Указать черты развития и сходства человеческих рас.

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 14. "Эволюционное учение." §38, §41-43 стр. 105-108, стр.115-122
    • Тема 15. "Приспособленность организмов. Видообразование." §44-48 стр. 123-131
    • Тема 16. "Доказательства эволюции. Развитие органического мира." §39-40 стр. 109-115, §49-55 стр. 135-160
    • Тема 17. "Происхождение человека." §49-59 стр. 160-172