Какое вещество имеет оптические изомеры. Химия

II.1. Конформации (поворотная изомерия)

Переход от простейшего органического углеводорода - метана, к его ближайшему гомологу - этану ставит проблемы пространственного строения, для решения которых недостаточно знать рассмотренные в разделе параметры. В самом деле, не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) . Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные поворотные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации: обычно в равновесии сосуществуют несколько легко переходящих друг в друга поворотных форм.

Способы графического изображения конформаций и их номенклатура таковы. Рассмотрение начнем с молекулы этана. Для нее можно предвидеть существоввание двух максимально различающихся по энергии конформаций. Они изображены ниже в виде перспективных проекций (1) ("лесопильные козлы"), боковых проекций (2) и формул Ньюмена (3).

В перспективной проекции (1а, 1б) связь С-С надо представить себе уходящей вдаль; стоящий слева углеродный атом приближен к наблюдателю, стоящий справа - удален от него.

В боковой проекции (2а, 2б) четыре Н-атома лежат в плоскости чертежа; атомы углерода на самом деле несколько выходят из этой плоскости, но обычно упрощенно считают их также лежащими в плоскости чертежа. "Жирные" клиновидные связи утолщением клина показывают на выход из плоскости по направлению к наблюдателю того атома, к которому обращено утолщение. Пунктирные клиновидные связи отмечают удаление от наблюдателя.

В проекции Ньюмена (3а, 3б) молекулу рассматривают вдоль связи С-С (в направлении, указанном стрелкой на формулах 1а,б). Три линии, расходящиеся под углом 120 о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, "высовывающиеся" из-за круга - связи удаленного углеродного атома.

Изображенную слева конформацию называют заслоненной : название это напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного) угла системы. Двугранный угол (обозначаемый тау) изображен на рисунке, приведенном ниже:

Энергетический профиль вращения вокруг связи С-С в этане показан на следующем рисунке. Вращение "заднего" атома углерода изображено изменением двугранного угла между двумя показанными атомами водорода. Для простоты остальные атомы водорода опущены. Барьер вращения, разделяющий две формы этана, составляет только 3 ккал/моль (12.6 кДж/моль). Минимумы кривой потенциальной энергии соответствуют заторможенным конформациям, максимумы - заслоненным. Поскольку при комнатной температуре энергия некоторых столкновений молекул может достигать 20 ккал/моль (около 80 кДж/моль), то этот барьер в 12.6 кДж/моль легко преодолевается и вращение в этане рассматривают как свободное.

Подчеркнем, что каждая точка на кривой потенциальной энергии соответствует определенной конформации. Точки, соответствующие минимумам, отвечают конформационным изомерам, то есть преобладающим компонентам в смеси всех возможных конформаций .

С усложнением молекулы число возможных заметно отличающихся по энергии конформаций возрастает. Так, для н -бутана можно изобразить уже шесть конформаций, отличающихся взаимным расположением СН 3 -групп, т.е. поворотом вокруг центральной связи С-С. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Различные заслоненные и заторможенные конформации бутана неодинаковы по энергии. Соответствующие энергии всех конформаций, обрпзующихся при вращении вокруг центральной С-С связи, представлены ниже:

По мере усложнения молекулы число возможных конфомаций возрастает.

Итак, конформации - это различные неидентичные пространственные формы молекулы, имеющие определенную конфигурацию. Конформеры - это стереоизомерные структуры, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых связей.

Иногда барьер таких превращений становится достаточно высоким, чтобы разделить стереоизомерные формы (пример - оптически активные дифенилы; ). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах .

II.2. Геометрическая изомерия

Важное следствие жесткости двойной связи (отсутствия вращения вокруг нее) - существование геометрических изомеров . Самые распространенные из них - это цис-транс-изомеры соединений этиленового ряда, содержащих у ненасыщенных атомов неодинаковые заместители. Простейшим примером могут служить изомеры бутена-2.

Геометрические изомеры имеют одинаковое химическое строение (одинаковый порядок химической связи), различаясь по пространственному расположению атомов, по конфигурации . Это различие и создает разницу в физических (а также химических свойствах). Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные, устойчивые вещества. Для их взаимного превращения необходима обычно энергия порядка 125-170 кДж/моль (30-40 ккал/моль). Эту энергию можно сообщить нагреванием или облучением.

В простейших случаях номенклатура геометрических изомеров не представляет затруднений: цис- формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости пи-связи, транс- изомеры имеют одинаковые заместители на разных сторонах от плоскости пи-связи. В более сложных случаях применяется Z,E-номенклатура . Ее главный принцип: для обозначения конфигурации указывают цис- (Z, от немецкого Zusammen - вместе) или транс- (Е, от немецкого Entgegen - напротив) расположение старших заместителей при двойной связи.

В Z,E-системе старшими считаются заместители с большим атомным номером. Если атомы, непосредственно связанные с ненасыщенными углеродами, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т.д.

Рассмотрим применение правил Z,E-номенклатуры на двух примерах.

I II

Начнем с формулы I, где все решается атомами "первого слоя". Расставив их атомные номера, получим, что старшие заместители каждой пары (бром в верхней части формулы и азот в нижней) находятся в транс -положении, отсюда следует стереохимические обозначение Е:

Е-1-бром-1-хлор-2-нитроэтен

Для определения стереохимического обозначения структуры II необходимо искать различие в "высших слоях". По первому слою группы СН 3 , С 2 Н 5 , С 3 Н 7 не отличаются. Во втором слое у группы СН 3 сумма атомных номеров равна трем (три атома водорода), у групп С 2 Н 5 и С 3 Н 7 - по 8. Значит, группа СН 3 не рассматривается - она младше двух других. Таким образом, старшие группы - это С 2 Н 5 и С 3 Н 7 , он находятся в цис -положении; стереохимические обозначение Z.

Z-3-метилгептен-3

Если бы понадобилось определить, какая группа старше - С 2 Н 5 или С 3 Н 7 , пришлось бы перейти к атомам "третьего слоя", сумма атомных номеров в этом слое для обеих групп оказались бы соответственно равными 3 и 8, т.е. С 3 Н 7 старше, чем С 2 Н 5 . В более сложных случаях определения старшинства надо учитывать дополнительные условия, как-то: атом, связанный двойной связью, считается дважды, связанный тройной - трижды; из числа изотопов старше более тяжелый (дейтерий старше водорода) и некоторые другие.

Отметим, что обозначения Z не является синонимами цис- обозначений, как и обозначения Е не всегда соответствуют расположению транс- , например:

цис- 1,2-дихлорпропен-1 цис- 1,2-дихлор-1-бромпропен-1

Z-1,2-дихлорпропен-1 Е-1,2-дихлор-1-бромпропен-1

Контрольные задачи

1. Бомбикол - феромон (половой аттрактант) тутового шелкопряда - представляет собой E-10-Z-12-гексадекадиенол-1. Изобразите его структурную формулу.

2. Назовите по Z,E-номенклатуре следующие соединения:

II.3. Оптическая изомерия (энантиомерия)

Среди органических соединений встречаются вещества, способные вращать плоскость поляризаации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными . Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение [ПРИМ.1] +20 о, то другой - удельное вращение -20 о).

II.4. Проекционные формулы

Для условного изображения асимметрического атома на плоскости пользуются проекционными формулами Э.Фишера . Их получают, проецируя на плоскость атомы, с которыми связан асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены различные способы записи проекционной формулы, отвечающей левой модели на предыдущем рисунке:

Приведем несколько примеров проекционных формул:

(+)-аланин (-)-бутанол (+)-глицериновый альдегид

При названиях веществ приведены их знаки вращения: это значит, например, что левовращающий антипод бутанола-2 имеет пространственную конфигурацию , выражаемую именно приведенной выше формулой, а ее зеркальное изображение отвечает правовращающему бутанолу-2. Определение конфигурации оптических антиподов проводится экспериментально [ПРИМ.3] .

В принципе, каждый оптический антипод может быть изображен двенадцатью (!) различными проекционными формулами - в зависимости от того, как расположена модель при проекции, с какой стороны мы смотрим на нее. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную функцию, если она стоит в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того, чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановок заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90 о превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. не считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом:

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее; четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

6. Проекционные формулы нельзя выводить из плоскости чертежа (т.е. нельзя, например, рассматривать их "на просвет" с обратной стороны бумаги - при этом стереохимический смысл формулы изменится).

II.5. Рацематы

Если в формуле вещества есть асимметрический атом, это отнюдь не означает, что такое вещество будет обладать оптической активностью. Если асимметрический центр возникает в ходе обычной реакции (замещение в группе СН 2 , присоединение по двойной связи и т.п.), то вероятность создания обеих антиподных конфигураций одинакова. Поэтому, несмотря на асимметрию каждой отдельной молекулы, получающееся вещество оказывается оптически неактивным. Такого рода оптически неактивные модификации, состоящие из равного количества обоих антиподов, называются рацематами [ПРИМ.4] .

II.6. Диастереомерия

Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром асимметрии.

Допустим, что в молекуле некоего вещества имеются два асимметрических атома; обозначим их условно А и Б. Легко видеть, что возможны молекулы со следующими комбинациями:

Молекулы 1 и 2 представляют собой пару оптических антиподов; то же самое относится и к паре молекул 3 и 4. Если же сравнивать друг с другом молекулы из разных пар антиподов - 1 и 3, 1 и 4, 2 и 3, 2 и 4, то мы увидим, что перечисленные пары не являются оптическими антиподами: конфигурация одного асимметрического атома у них совпадает, конфигурация другого - не совпадает. Все это пары диастереомеров , т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами.

Примером соединения рассматриваемого типа может случить хлоряблочная кислота

Ее стереоизомерные формы имеют следующие проекционные формулы:

эритро- формы трео- формы

Названия эритро - и трео - происходят от названий углеводов эритрозы и треозы. Эти названия употребляют для указания взаимного положения заместителей у соединений с двумя асимметрическими атомами: эритро -изомерами называют те, у которых два одинаковых боковых заместителя стоят в стандартной проекционной формуле на одной стороне (справа или слева); трео -изомеры имеют одинаковые боковые заместители на разных сторонах проекционной формулы [ПРИМ.5] .

Два эритро- изомера представляют собой пару оптических антиподов, при их смешении образуется рацемат. Парой оптических изомеров являются и трео- формы; они тоже дают при смешении рацемат, отличающийся по свойствам от рацемата эритро- формы. Таким образом, всего существуют четыре оптически активных изомера хлоряблочной кислоты и два рацемата.

При дальнейшем росте числа асимметрических центров число пространственных изомеров возрастает, причем каждый новый асимметрический центр вдвое увеличивает число изомеров. Оно определяется формулой 2 n , где n - число асимметрических центров.

Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Примером может служить винная кислота, у которой число индивидуальных стереоизомеров сокращается до трех. Их проекционные формулы:

Формула I идентична с формулой Iа: превращается в нее при повороте на 180 о в плоскости чертежа и, следовательно, не изображает нового стереоизомера. Это оптически неактивная модификация - мезо-форма . В отличие от рацемата, который может быть расщеплен на оптические антиподы , мезо- форма принципиально нерасщепляема: каждая ее молекула имеет один асимметрический центр одной конфигурациии, второй - противоположной. В итоге происходит внутримолекулярная компенсация вращения обоих асимметрических центров.

Мезо- формы имеются у всех оптически активных веществ с несколькими одинаковыми (т.е. связанными с одинаковыми заместителями) асимметрическими центрами [ПРИМ.6] . Проекционные формулы мезо- форм всегда можно узнать по тому, что их всегда можно разделить горизонтальной линией на две половины, которые по записи на бумаге формально идентичны, в действительности же зеркальны:

Формулы II и III изображают оптические антиподы винной кислоты; при их смешении образуется оптически неактивный рацемат - виноградная кислота.

II.7. Номенклатура оптических изомеров

Самая простая, наиболее старая, однако и ныне еще употребляемая система номенклатуры оптических антиподов основана на сравнении проекционной формулы называемого антипода с проекционной формулой некоего стандартного вещества, выбранного в качестве "ключа". Так, для альфа-оксикислот и альфа -аминокислот ключом является верхняя часть их проекционной формулы (в стандартной записи):

L- оксикислоты (Х = ОН) D- оксикислоты (Х = ОН)

L-аминокислоты (Х = NH 2) D- аминокислоты (Х = NH 2)

Конфигурацию всех альфа -оксикислот, имеющих в стандартно написанной проекционной формуле Фишера гидроксильную группу слева, обозначают знаком L ; если же гидроксил расположен в проекционной формуле справа - знаком D [ПРИМ.7] .

Ключом для обозначения конфигурации сахаров служит глицериновый альдегид:

L-(-)-глицериновый альдегид D- (+)-глицериновый альдегид

В молекулах сахаров обозначение D- или L- относится к конфигурации нижнего асимметрического центра.

Система D- ,L- обозначений имеет существенные недостатки: во-первых, обозначение D- или L- указывает конфигурацию только одного асимметрического атома, во-вторых, для некоторых соединений получаются разные обозначения, в зависимости от того, взят ли в качестве ключа глицериновый альдегид или оксикислотный ключ, например:

Эти недостатки системы ключей ограничивают ее применение в настоящее время тремя классами оптически активных веществ: сахарами, аминокислотами и оксикислотами. На общее же применение рассчитана "R,S-система Кана, Ингольда и Прелога [ПРИМ.8] .

Для определения R- или S-конфигурации оптического антипода необходимо расположить тетраэдр заместителей вокруг асимметрического углеродного атома таким образом, чтобы младший заместитель (обычно это водород) имел направление "от наблюдателя". Тогда если движение при переходе по кругу трех остальных заместителей от старшего к среднему по старшинству и затем к самому младшему происходит против часовой стрелки - это R -изомер (ассоциируется с таким же движением руки при написании буквы R), если по часовой стрелке - это S- изомер (ассоциируется с таким же движением руки при написании буквы S).

Для определения старшинства заместителей у асимметрического атома используются правила подсчета атомных номеров, уже рассматривавшиеся нами в связи с Z,E-номенклатурой геометрических изомеров (см. ).

Для выбора R,S-обозначений по проекционной формуле необходимо путем четного числа перестановок (не изменяющих, как мы знаем, стереохимического смысла формулы) расположить заместители так, чтобы младший из них (обычно водород) оказался внизу проекционной формулы. Тогда старшинство остальных трех заместителей, падающее по часовой стрелке, соответствует обозначению R, против часовой стрелки - обозначению S [ПРИМ.9] :

Контрольные задачи

3. Определите конфигурацию асимметрического центра аскорбиновой кислоты (витамина С) (по R,S -номенклатуре и по сравнению с глицериновым альдегидом):

4. Алкалоид эфедрин имеет формулу:

Дайте название этого соединения, используя R,S -номенклатуру.

5. Цистеин - заменимая аминокислота, участвующая в регуляции процессов обмена веществ, представляет собой L -1-амино-2-меркаптопропионовую кислоту. Изобразите его структурную формулу и дайте название по R,S -номенклатуре.

6. Левомицетин (антибиотик широкого спектра действия) представляет собой D (-)-трео-1-пара-нитрофенил-2-дихлорацетиламино-пропандиол-1,3. Изобразите его структуру в виде проекционной формулы Фишера.

7. Синэстрол - синтетический эстрогенный препарат нестероидного строения. Дайте его название с обозначением стереохимической конфигурации:

II.8. Стереохимия циклических соединений

При замыкании цепи углеродных атомов в плоский цикл валентные углы атомов углерода вынуждены отклоняться от своего нормального тетраэдрического значения, причем величина этого отклонения зависит от числа атомов в цикле. Чем больше угол отклонения валентных связей, тем больше должен быть запас энергии молекулы, тем меньше устойчивость цикла. Однако, плоское строение имеет только трехчленный циклический углеводород (циклопропан); начиная с циклобутана молекулы циклоалканов имеют неплоское строение, что понижает "напряжение" в системе.

Молекула циклогексана может существовать в виде нескольких конформаций, в которых сохраняются "нормальные" валентные углы (для упрощения показаны только атомы углерода):

Энергетически наиболее выгодной является конформация I - так называемая форма "кресла ". Конформация II - "твист " - занимает промежуточное положение: она менее выгодна, чем конформация кресла (из-за наличия в ней заслоненно расположенных атомов водорода), но более выгодна, чем конформация III. Конформация III - "ванна " - наименее выгодна из трех вследствие значительного отталкивания направленных верх атомов водорода.

Рассмотрение двенадцати связей С-Н в конформации кресла позволяет разделить их на две группы: шесть аксиальных связей, направленных поочередно то вверх, то вниз, и шесть экваториальных связей, направленных в стороны. В монозамещенных циклогексанах заместитель может находиться либо в экваториальном, либо в аксиальном положении. Эти две конформации обычно находятся в равновесии и быстро переходят друг в друга через конформацию твист:

Экваториальная конформация (е) обычно беднее энергией и поэтому более выгодна, чем аксиальная (а).

При появлении в циклах заместителей (боковых цепей) кроме проблемы конформации самого цикла перед исследователем встают и проблемы конфигурации заместителей : так, в случае наличия двух одинаковых или различных заместителей появляются цис-транс -изомера. Отметим, что говорить о цис-транс -конфигурации заместителей имеет смысл только в приложении к насыщенным малым и средним циклам (до С 8): в кольцах с большим числом звеньев подвижность становится уже столь значительной, что рассуждения о цис- или транс - положении заместителей теряют смысл.

Так, классическим примером являются стереоизомерные циклопропан-1,2-дикарбоновые кислоты. Существуют две стереоизомерные кислоты: одна из них, имеющая т.пл. 139 о С, способна образовывать циклический ангидрид и является, следовательно, цис -изомером. Другая стереоизомерная кислота с т.пл. 175 о С, циклического ангидрида не образует; этотранс -изомер [ПРИМ.10] :

В таких же отношениях друг с другом находятся две стереоизомерные 1,2,2-триметилциклопентан-1,3-дикарбоновых кислоты. Одна из них, камфорная кислота, т.пл. 187 о С, образует ангидрид и, следовательно, является цис -изомером. Другая - изокамфорная кислота, т.пл. 171 о С, - ангидрида не образует, это транс -изомер:

цис- транс-

Хотя молекула циклопентана на самом деле неплоская, для наглядности удобно изображать ее в плоском виде, как на приведенном выше рисунке, имея в виду, что в цис- изомере два заместителя находятся по одну сторону цикла , а в транс -изомере - по разные стороны цикла .

Дизамещенные производные циклогексана также могут существовать в цис- или транс-форме:

Атом углерода не обладает монополией на создание хиральных центров в молекулах органических соединений. Центром хиральности могут быть также атомы кремния, олова, четырехковалентного азота в четвертичных аммониевых солях и окисях третичных аминов:

В этих соединениях центр асимметрии имеет тетраэдрическую конфигурацию, как и асимметрический атом углерода. Существуют, однако, и соединения с иной пространственной структурой хирального центра.

Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. В принципе, центр асимметрии можно считать тетраэдрическим, если в качестве четвертого заместителя принять неподеленную электронную пару гетероатома:

Оптическая активность может возникать и без хирального центра, за счет хиральности структуры всей молекулы в целом (молекулярная хиральность или молекулярная асимметрия ). Наиболее характерными примерами являются наличие хиральной оси либо хиральной плоскости .

Хиральная ось возникает, например, в алленах, содержащих различные заместители при sp 2 -гибридных углеродных атомах. Легко видеть, что приведенные ниже соединения являются зеркальными изображениями, а, значит, оптическими антиподами:

Ось хиральности показана на рисунках стрелкой.

Другой класс соединений, имеющих хиральную ось - оптически активные бифенилы, имеющие в орто -положениях объемистые заместители, затрудняющие свободное вращение вокруг С-С связи, соединяющей ареновые кольца:

Хиральная плоскость характеризуется тем, что у нее можно различить "верх" и "низ", а также "правую" и "левую" стороны. Примером соединений с хиральной плоскостью могут служить оптически активный транс- циклооктен и оптически активное производное ферроцена.

В литературе сплошь и рядом утверждается, что для питания и в качестве структурных элементов нашему метаболизму подходят только левовращающие аминокислоты. Психологически это понятно: природные аминокислоты действительно чаще всего относятся к так называемому L-ряду, а буква L обычно ассоциируется с понятием «левый». Однако такое «отнесение» L-соединений к левовращающим, а соединений D-ряда - к правовращающим абсолютно неверно. Достаточно взглянуть хотя бы на список 23 важнейших аминокислот белка (они приведены, например, в учебнике А. Н. Несмеянова и Н. А. Несмеянова «Начала органической химии»), чтобы убедиться, что левовращающих (для растворов в ледяной уксусной кислоте) - всего лишь семь, меньше трети. Остальные - правовращающие, за исключением оптически неактивного глицина. В «Химической энциклопедии» в списке из 26 наиболее распространенных аминокислот левовращающих и того меньше, всего шесть (23%). Многие путают направление вращения плоскости поляризации света веществом и строение его молекул, которые можно отнести к D- или L-виду.

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры: свет - это волны или частицы. Томас Юнг сформулировал в 1800 году принцип суперпозиции волн и на его основании объяснил явление интерференции света. В 1808 году Этьен Луи Малюс, экспериментируя с кристаллами исландского шпата (кальцита), открыл явление поляризации света. В 1816 году Огюстен Жан Френель высказал идею о том, что световые волны - поперечные. Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландский шпат или турмалин, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Глаз человека лишь в редких случаях и с трудом может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов - поляриметров.

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году Жан Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров -оптически неактивные. Это обнаружил в 1830 году знаменитый немецкий химик Йене Якоб Берцелиус: виноградная кислота С 4 Н 6 0 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

В 1828 году Уильям Николь, используя прозрачные кристаллы исландского шпата, сконструировал поляризатор света - «призму Николя». А осуществив в 1839 году комбинацию двух таких призм, он получил поляриметр - прибор для измерения угла поворота плоскости поляризации света. С тех пор такой поляриметр стал одним из самых распространенных приборов в физических лабораториях.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, после окончания Высшей нормальной школы в Париже 26-летний Пастер работал лаборантом у Антуана Балара (первооткрывателя брома).

В ходе исследования Пастер приготовил раствор кислой натриевой соли виноградной кислоты НООС–CHOH–CHOH–COONa, насытил раствор аммиаком и, медленно выпаривая воду, получил красивые призматические кристаллы тетрагидрата натриево-аммониевой соли Na(NH) 4 C 4 H 4 O 6 ·4H 2 O. Кристаллы эти оказались асимметричными. У части кристаллов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга. Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной. Было непонятно, почему одно исходное вещество дало кристаллы разной формы. Пастер на этом не остановился. Из каждого раствора он осадил нерастворимую свинцовую или бариевую соль, а действуя на эти соли сильной серной кислотой, вытеснил из них более слабую органическую. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая, как мы помним, была неактивной. Каково же было удивление Пастера, когда оказалось, что из одного раствора соли образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась такая же кислота, но вращающая влево! До той поры левовращающую винную кислоту никто не видел! Эти кислоты получили название d -винной для правовращающей разновидности (от лат. dexter - правый) и l -винной для левовращающего изомера (от лат. laevus - левый).

Открытие состояло в том, что давно известная неактивная виноградная кислота оказалась смесью равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому их смесь в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus - виноград; на латыни acidum racemicum - виноградная кислота), а два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. enantios - противоположный). Пастеру повезло: в дальнейшем обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом. Более того, натрий-аммониевая соль винной кислоты, с которой работал Пастер, образует кристаллы разной формы только в том случае, если кристаллизация происходит из раствора, температура которого ниже 28°С. При этом выпадает тетрагидрат. При более высоких температурах из раствора выпадают симметричные кристаллы моногидрата.

Вскоре Пастер открыл также четвертую форму винной кислоты. Она была оптически неактивной, но не являлась рацематом, так как разделить ее на антиподы оказалось невозможно. Пастер назвал эту кислоту мезовинной, от греч. mesos - средний, промежуточный. Пастер нашел еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. И здесь Пастеру повезло. Один из аптекарей аптеки дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер выяснил: бывшая когда-то неактивной кислота стала левовращающей. Зеленый плесневой грибок Penicillum glaucum в растворе разбавленной виноградной кислоты или ее солей «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на «недеятельную» миндальную кислоту, только в данном случае она ассимилирует левовращающий изомер, не трогая правовращающий. Таких случаев стало известно немало. Например, дрожжи сахаромицета эллипсоидального (Saccharomyces ellipsoideus ), в отличие от Penicillum glaucum , «специализируется» на правом изомере миндальной кислоты, оставляя без изменения левый. Другой способ разделения рацематов был химическим. Для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью «выбирало» бы из нее только один энантиомер. Например, оптически активное основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной и кислоты.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф («Химия и жизнь», 2009, № 1). Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Возьмем простейшую аминокислоту аланин: две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука).

В винной кислоте два асимметрических атома углерода. Если оба они будут «правыми», получится правовращающая (+)-винная кислота, если «левыми» - левовращающая (–)-винная, если один «левым», а другой - «правым», то получится мезовинная кислота. Если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах при участии асимметричных агентов (например, ферментов) образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький. Заметим, что на естественный вопрос - как появились на Земле первые оптически активные химические соединения - четкого ответа пока нет.

Проблема абсолютной конфигурации

Раньше не было возможности определить, какова в действительности пространственная конфигурация молекул того или иного оптически активного вещества, например упомянутого выше аланина. Однако чисто химическими методами можно было установить аналогичность конфигураций разных веществ. Например, молекулы правовращающего d -глицеринового альдегида были аналогичны по своей конфигурации молекулам левовращающей l -молочной кислоты и правовращающей d -яблочной кислоты. В 1906 году по предложению М. А. Розанова в качестве стандарта для установления относительной конфигурации оптически активных молекул был выбран глицериновый альдегид. При этом Э. Г. Фишер предложил правовращающему глицериновому альдегиду приписать (чисто произвольно) структуру,

в которой звездочкой обозначен асимметрический атом углерода, связанный с четырьмя разными заместителями. На подобных рисунках две «горизонтальные» связи (в данном случае это связи С–Н и С–ОН) располагаются под плоскостью рисунка, а две «вертикальные» связи (С–СНО и С–СН 2 ОН) - над плоскостью. Такой способ изображения называется проекцией Фишера, названной в честь Эмиля Германа Фишера, второго лауреата Нобелевской премии по химии за 1902 год.

Несколько слов о практически неизвестном у нас Розанове. Мартин Андре Розанов (1874–1951) родился на Украине в семье Абрахама и Клары Розенбергов. После окончания классической гимназии в родном Николаеве продолжил образование в Берлине и Париже, а затем в Нью-Йорке. Работал в Нью-Йоркском университете, затем в Питтсбургском институте Меллона, где ему впервые в истории института была предоставлена пожизненная должность профессора химии. Сестра Мартина Лилиан (1886–1986) была деканом математического факультета в университете Лонг-Айленда; брат Аарон Джошуа был известным американским психиатром, работал в Калифорнии. Среди «нехимических» работ М. А. Розанова выделяется большая статья «Эдисон в своей лаборатории» (1932), в которой автор помимо прочего описал разные забавные случаи, в том числе из опыта своего общения с известным изобретателем.

Изображенную структуру назвали D(+)-глицериновым альдегидом. Соответственно все вещества, стереохимически аналогичные этому альдегиду, стали относить к D-ряду. Оптический антипод этого альдегида был назван L-глицериновым альдегидом, а родственные ему вещества стали относить к L-ряду («+» означает, что плоскость поляризации вращается вправо, «–» - влево):

Глицериновый альдегид - одно из простейших оптически активных соединений, легко получается окислением глицерина, а главное - из него можно путем ряда последовательных асимметрических синтезов получить самые различные соединения. Так устанавливается относительная конфигурация правовращающих винной и яблочной кислот и изосерина, левовращающей молочной кислоты и множества других оптически активных соединений. При альдольной конденсации глицеринового альдегида с дигидроксиацетоном получается смесь фруктозы и сорбозы, которые можно разделить. Понятно, что в ходе таких синтезов абсолютная конфигурация у асимметрического атома углерода должна оставаться неизменной. Так и происходит, если не рвется химическая связь этого атома углерода с одним из соседних заместителей. В противном случае может произойти либо потеря оптической активности (как, например, в реакциях нуклеофильного замещения типа S N 1), либо изменение конфигурации на противоположную. Последний процесс, так называемое вальденовское обращение, происходит, например, в реакциях S N 2; он назван по имени Пауля (Павла Ивановича) Вальдена (1863–1957), открывшего его в 1889 году.

Прописные буквы D и L вместо строчных были приняты для того, чтобы не смешивать конфигурацию вещества, установленную относительно глицеринового альдегида, с направлением вращения плоскости поляризации света этим веществом. Так и получилось, что часть соединений D-ряда вращают вправо, часть - влево, и направление вращения никак не связано с принадлежностью вещества к кому-либо из этих рядов. Например, в природе найдена только D(-)-фруктоза (она же левулоза, потому что вращает плоскость поляризации влево). С другой стороны, и L-, и D-аспарагины - правовращающие аминокислоты. У миндальной кислоты С 6 Н 5 СН(ОН)СООН - два оптических изомера: левовращающий D(–)- и правовращающий L(+)-изомер. Таких примеров множество. Следовательно, нельзя заранее установить отношение между знаком вращения соединения и его конфигурацией: два соединения с одной и той же относительной конфигурацией могут иметь противоположные знаки вращения. И наоборот, сходные соединения с одним и тем же знаком вращения могут иметь противоположные относительные конфигурации.

Прямое определение абсолютной конфигурации молекулы - сложная задача, и в течение длительного времени химики обходились лишь отнесением молекул к D- или L-ряду. И только в середине XX века эта задача была решена Дж. Бейвутом с сотрудниками, которые работали в лаборатории имени Вант-Гоффа Утрехтского университета. Эпохальная работа под названием «Определение абсолютной конфигурации оптически активных веществ методом дифракции рентгеновских лучей» была опубликована 18 августа 1951 года в журнале «Nature ». Авторы путем рентгеноструктурного анализа кристаллов калий-рубидиевой соли D(+)-винной кислоты показали, что Фишер не ошибся, постулировав абсолютную конфигурацию энантиомеров глицеринового альдегида! А это значит, что правильны были установлены не только относительные, но и абсолютные конфигурации всех оптически активных соединений! На самом деле у Фишера было ровно по 50% шансов сделать правильный выбор или ошибиться. Сходная история имела место, когда задолго до открытия электрона выбирали направление для протекания электрического тока. И - ошиблись, выбрав направление от плюса к минусу.

Поскольку в основополагающей исходной публикации Бейвута в журнале Nature не были приведены исходные экспериментальные данные, принципиальным оставался вопрос об обоснованности сделанных выводов, тем более что экспериментальная техника тех времен была далеко не совершенной. В частности, не было компьютеров, без которых сейчас не обходится ни одна работа в области рентгеноструктурного анализа. Чтобы снять все возможные подозрения, сотрудники Центра молекулярной биологии Утрехтского университета Мартин Лутц и М. М. Шроерс предприняли недавно проверку результатов своих коллег более чем полувековой давности с использованием самого современного оборудования. Их работа, опубликованная в августе 2008 года в журнале «Acta Crystallographica », section С: «Crystal Structure Communications », называлась «Был ли прав Бейвут? Повторное исследование тетрагидрата тартрата натрия - рубидия». Для получения монокристалла авторы нагрели раствор (+)-винной кислоты до 60°С и начали по каплям добавлять в него раствор эквимолярной смеси карбонатов натрия и рубидия. Сначала в осадок выпал менее растворимый кислый тартрат рубидия. Затем, когда закончилось выделение углекислого газа, осадок полностью перешел в раствор. При его испарении при комнатной температуре образовался бесцветный порошок, перекристаллизация которого из минимального количества воды дала кристаллы Na + ·Rb + ·C 4 H 4 О 6 2– ·4H 2 О, пригодные для исследования. На вопрос, заданный в заголовке статьи, авторы ответили «да».

Работа Бейвута с сотрудниками 1951 года была поистине эпохальной. Впервые появилась возможность избавиться от некоторого несоответствия в обозначениях D и L, которые указывали только на генетическую связь с глицериновыми альдегидами, но никак не на направление оптического вращения. Такая возможность была осуществлена в 1956 году по предложению Роберта Сидни Кана и Кристофера Келка Ингольда и лауреата Нобелевской премии за 1975 год (совместно с Дж. У. Корнфортом) Владимира Прелога. Их первая статья была опубликована в сравнительно малоизвестном швейцарском журнале «Experientia », и тем не менее предложение получило широкое распространение. Так, оно подробно описывается в учебнике органической химии Луиса и Мэри Физеров (1961, русский перевод 1966). Но наибольшую известность эта система получила после публикации в 1966 году детально разработанной универсальной стереохимической номенклатуры (см. Cahn R.S., Ingold С.К., Prelog V. Specification of Molecule Chirality // Angew. Chem., Int. Ed. Engl. , 1966, 5, 385–415; полный текст - PDF, 3,4 Мб).

Авторы предложили ввести понятие хиральности как свойства объекта быть несовместимым со своим отображением в идеальном плоском зеркале и R S -систему (от лат. rectus -прямой, правильный и sinister - левый) для обозначения хиральности.

Подробное описание применения этого правила к оптически активным соединениям можно найти в учебниках органической химии, а так же в учебнике К. П. Бутина . В нем используется определенное расположение групп вокруг хирального центра - по часовой стрелке, в соответствии со «старшинством» этих групп. В частности, по новой номенклатуре правовращающий D-глицериновый альдегид получает обозначение R. Обозначения R и S добавляют к названию соединения в качестве приставок. Так, энантиомерами 1-бром-1-хлорэтана являются R -1-бром-1-хлорэтан и S -1-бром-1-хлорэтан. Их оптически неактивная рацемическая модификация обозначается R,S -1-бром-1-хлорэтан. Однако по традиции широко используются и старые обозначения D и L, например, для cахаров и аминокислот.

В заключение этого раздела отметим еще одно весьма распространенное заблуждение - о том, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже 2 встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном - в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин. С D-аминокислотами работают, например, на кафедре химической энзимологии химического факультета МГУ. А в 2008 году на биологическом факультете МГУ состоялась защита А. В. Дмитриевым диссертации на соискание степени доктора физико-математических наук на тему «Физико-химические механизмы переноса ионов в природных и хирально модифицированных модельных каналах». Автор изучал, в частности, модифицированные модельные белки, включающие D-аминокислоты. Было показано, что для получения первичной структуры белка с природной функциональностью, построенного из D-аминокислот, достаточно десяти D-аминокислот.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом - лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств - в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастии стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные - рацематы.

Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем вызвать нежелательные побочные эффекты или быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы Т4. А правовращающий R -тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon » для наркотического анальгетика и «Novrad » для противокашлевого препарата.

Как уже отмечалось на примере аминокислоты лейцина, человек - существо хиральное. И это относится не только к его внешнему виду. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S -анаприлин действует в сто раз сильнее, чем R -форма. У антигельминтного препарата левамизола активен в основном в S -изомер, тогда как его R- антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме - диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S -изомера. В то же время R -ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck » разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.

И последний пример. Пеницилламин (3,3-диметилцистеин) - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S -форму препарата, так как R -изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education » за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало».

Илья Абрамович Леенсон,
кандидат химических наук
«Химия и жизнь» №5, 2009

Изомерия – это явление, обусловленное существованием молекул, имеющих одинаковый качественный и количественный состав, но различающихся по химическим и физическим свойствам вследствие неодинакового расположения атомов (или групп атомов) в молекуле или их ориентации в пространстве.

Известно, что свет представляет собой электромагнитные волны, фаза колебания которых, перпендикулярна направлению их распространения. В естественном свете такие колебания происходят во всех возможных плоскостях. Если же луч света пропустить через кристалл, имеющий строго упорядоченное строение (рис 1), то электромагнитные колебания будут совершаться только в одной определенной плоскости. Свет, фаза колебания которого вне этой плоскости, призмой задерживается. Такой луч света называется поляризованным (плоскополяризованным). Плоскость, перпендикулярная плоскости колебаний поляризованного света, является плоскостью поляризации. Обычно в качестве стереорегулярого кристалла используют так называемую призму Николи.

Рис. 1. Схематическое изображение электромагнитных колебаний в луче обыкновенного и поляризованного света; 1 - в обыкновенном свете; 2 - в поляризованном свете; 3 - плоскость поляризации; 4 - призма Николя

Оптически активные соединения «вращают» плоскость поляризации вправо или влево (рис.2). Для обозначения этих вращений используют знаки (+) и (-), которые ставят перед формулой оптического изомера.

Рис. 2. Изменение плоскости поляризации при прохождении поляризованного света через оптически активные вещества: 1 - оптически активное вещество, 2 - первоначальная плоскость поляризации, повернутая на угол α после прохождения света через оптически активное вещество.

Оптическая (зеркальная) изомерия

Оптическая (зеркальная) изомерия обусловлена пространственной асимметрией молекул. Такие молекулы при одинаковом химическом строении не могут быть совмещены в пространстве ни при каких поворотах, подобно тому, как нельзя совместить правую и левую руки. Молекулы, обладающие оптической изомерией, как правило, имеют центр асимметрии. Этот центр называют асимметрическим или хиральным. Хиральный центр имеют соединения содержащие атом углерода в состоянии sp 3 -гибридизации, который содержит четыре разных заместителя: Xabcd.

Заметим что, асимметрические центры могут возникать не только у атома углерода, но и у других атомов, например, серы, азота, фосфора, кремния и т.д. Во многих случаях асимметричными являются молекулы комплексных соединений. При этом, в ряде случаев, роль одного из "заместителей" выполняет неподеленная пара электронов.

Пример оптически активного соединения – молочная кислота :

В молекуле молочной кислоты имеется хиральный центр, поэтому существуют два пространственных изомера, являющиеся зеркальными изомерами. Два стереоизомера, относящиеся друг к другу как предмет и его зеркальное отражение, называют антиподами, или энантиомерами. Антиподы отличаются только знаком оптического вращения.

По системе Фишера-Розанова конфигурации оптических изомеров подразделяют на два ряда: D и L. Необходимо помнить, что обозначения D и L не имеют ничего общего с направлением вращения плоскополяризованного света (правовращающий изомер можно обозначить буквой «d », а левовращающий – буквой «l », но не прописными буквами).

Если в стандартной проекционной формуле Фишера ОН-группа (или NH 2 для аминокислот) стоит справа, то данный стереоизомер относят к D ряду, если слева, то к L-ряду.

Правила работы с проекционными формулами Фишера

Нечётное количество перестановок (1, 3 …) или поворот на 90° (270 0) меняют конфигурацию на противоположную.

Чётное количество перестановок (2, 4 …) или поворот на 180° не меняют конфигурацию.

Пример:

Взаимная перестановка любых двух групп в проекциях Фишера приводит к превращению энантиомера в его зеркальное отображение:

D,L- номенклатуру продолжают применять для аминокислот, углеводов и многих других природных соединений. Однако данная система имеет ряд недостатков и в настоящее время для описания конфигураций новых соединений не применяется, а вместо нее используют систему Кана-Ингольда-Прелога (R,S-стереохимическая номенклатура).

Система Кана – Ингольда – Прелога. R,S-обозначение конфигураций

Для описания абсолютных конфигураций в настоящее время используется система Кана-Ингольда-Прелога (Р. Кан, Д. Ингольд и В. Прелог, 1966) или R-S – система обозначений пространственной конфигурации соединений, в которой R обозначает правый (rectus), а S – левый (sinister). Обозначения R и S помещают в скобках перед названием структуры. Следует понимать, что обозначения абсолютных конфигураций, не связаны какой то зависимостью с физическим явлением - вращением плоскополяризованного луча, то есть знак + или – может стоять у значка R или S. Вместе с тем, изображенная в соответствии с этими правилами абсолютная конфигурация должна точно соответствовать истинному строению данной молекулы, подтвержденному экспериментальными данными.

Возьмем соединение Xabcd содержащее один асимметрический центр X. Чтобы установить его конфигурацию, четыре заместителя у атома X следует пронумеровать и расположить в ряд в порядке уменьшения старшинства 1>2>3>4.

Заместители рассматриваются наблюдателем со стороны, наиболее удаленной от самого младшего заместителя (обозначенного номером 4). Если при этом направление убывания старшинства остальных заместителей (младший не учитывается) 1®2®3 совпадает с движением по часовой стрелке, то конфигурация данного асимметрического центра обозначают символом R, а если против часовой стрелки – символом S.

Определение порядка старшинства заместителей при асимметрическом атоме

(данное правило применимо и для анализа других изомеров, где необходимо рассмотреть старшинство заместителей, в частности для анализа конформаций и диастереомеров)

1. Отмечают атомный номер каждого из атомов, непосредственно присоединенных к рассматриваемому асимметрическому атому углерода.

2. Располагают эти атомы в порядке убывания атомного номера. Предпочтение по старшинству отдается атомам с более высокими атомными номерами. Если номера одинаковы (в случае изотопов), то более старшим считается атом с наибольшей атомной массой. Самый младший «заместитель» - неподеленная электронная пара. Таким образом, старшинство возрастает в ряду: неподеленная пара

3. Если с асимметрическим атомом непосредственно связаны два, три, все четыре одинаковых атома, порядок устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство. Порядок старшинства часто встречающихся заместителей у асимметрического углерода следующий: I, Br, Cl, SH, OH, NO 2 , NH 2 , COOR, COOH, CHO, CR 2 OH, CHOHR, CH 2 OH, C 6 H 5 , CH 2 R, CH 3 , H.

4. Заместитель с R-конфигурацией имеет преимущества перед заместителем с S-конфигурацией.

5. Кратные связи рассматриваются как несколько простых связей. Например, карбоксильную группу представляют как две связи C-O, двойную связь в алкенах – как две связи C-C, тройную связь – как три связи C-C, а нитрильную группу – как три связи C-N.

В этом соединении асимметрический атом связан с атомом хлора и тремя атомами углерода. Поскольку хлор имеет больший атомный номер, он является самым старшим. Для того чтобы расположить по старшинству остальные три заместителя, поступают следующим образом.

Выделяют "слои" атомов, постепенно удаляющиеся от асимметрического атома:

Так как атомы первого слоя одинаковы, переходят ко второму слою и рассматривают тройки атомов. Можно использовать такую запись троек атомов второго слоя, связанных с атомами углерода первого слоя: С(F,H,H), C(Cl,H,H), C(Br,H,H). Выделяют старший атом в каждой тройке и сравнивают их старшинство: F < Cl < Вr.

В таком же порядке изменяется и старшинство заместителей, в состав которых входят данные атомы.

Диастереомерия σ-Диастереомерия

Число стереоизомеров соединений с двумя и более асимметрическими центрами можно рассчитать по формуле: N=2 n , где N - число стереоизомеров,а n – число асимметрических атомов.

При рассмотрении 2-фтор-3-хлор-4-бромпентана можно убедиться, что количество изомеров 2 3 равно 8.

Пример:

Существует четыре стереоизомера для молекул с двумя асимметрическими атомами углерода, которые показаны на рисунке, на примере 3-хлорбутанола-2 -СН 3 СНОНСНСlCH 3 . Возникает ситуация когда молекулы в каждой паре изомеров А и В являются энантиомерами (оптическими изомерами). Если же мы сравним любой из изомеров группы А с любым стереоизомером группы В, то обнаружим, что они не являются зеркальными антиподами. Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами . σ- Диастереомеры, в отличие от энантиомеров имеют различные физико-химические свойства и, как правило, отличающиеся химические свойства.

Любой из энантиомеров А является диастереомером по отношению к энантиомерам В

Могут реализоваться случаи, когда число изомеров меньше предсказываемого формулой 2 n . Такие случаи встречаются, когда в структуре существуют одинаковые асимметрические центры, то есть центры с одинаковым набором атомов или групп атомов, например, в 2,3-дибромбутане:

Молекулы I и II хиральны. Нетрудно видеть, что проекции III и IV изображают одно и то же соединение: эти проекции полностью совмещаются друг с другом при повороте на 180° в плоскости листа. В проекциях III и IV легко обнаруживается плоскость симметрии, перпендикулярная центральной С-С-связи и проходящая через ее середину. В данном случае проекции III и IV содержат асимметрические центры, но не обладают хиральностью, то есть проекции III и IV это одна и та же молекула, перевернутая на 180°. Вещества, состоящие из таких молекул, называют мезо -формами. Мезо -форма не способна вращать плоскость поляризации света, то есть она оптически неактивна.

Согласно определению, любой из энантиомеров I и II является σ- диастереомером по отношению к мезо -форме, то есть они отличаются физико-химическими и химическими свойствами.

Эритро-трео обозначения σ-диастереомеров

В некоторых случаях для обозначенияσ-диастереомеров используются традиционно применяющиеся в стереохимии дескрипторыэритро - и трео -. При этом сравнивают расположение одинаковых заместителей при двух асимметрических атомах в проекции Фишера. Стереоизомеры, в которых одинаковые заместители при асимметрических атомах углерода расположены по одну сторону от вертикальной линии, называют эритро-изомерами . Если такие группы находятся по разные стороны от вертикальной линии, то говорят о трео-изомерах . В изомерах 3-хлорбутанола-2 (I) -(IV) такими реперными группами являются атомы водорода, и эти соединения получают следующие названия:

Приставки эритро - и трео - происходят от названий углеводов: треозы и эритрозы.

В случае соединений с большим числом асимметрических центров иногда применяют другие стереохимические дескрипторы, также происходящие от названий углеводов (рибо -, ликсо -, глюко - и т.п.).

Диастереомерия соединений содержащих кратные связи. π-Диастереомерия

Геометрическая изомерия – это стереоизомерия, обусловленная различным расположением заместителей вокруг двойных связей. Если оба заместителя располагаются по одну сторону от двойной связи, то это цис -изомер, если по разные строны, то это транс-изомер. Транс -измеры энергетически более устойчивы вследствие наименьшего взаимного отталкивания заместителей. Отметим, что геометрических изомеров не образуют соединения у который двойная связь располагается у концевого атома углерода. Пример:

Сложнее ситуация когда в алкене различные заместители. В современной номенклатуре правила последовательного старшинства применимы также и к описанию геометрических изомеров непредельных соединений. Заместители у каждого конца кратной связи при установлении старшинства должны рассматриваться отдельно. Если заместители, имеющие более высокое старшинство, расположены с одной и той же стороны двойной связи, соединению присваивают префикс Z (от немецкого zusammen – вместе), а если по разным сторонам, то префикс E (entgegen – напротив).

Фторхлорбромпропилен

Z , E -Номенклатура распространена и на прочие геометрические изомеры, в которых π-диастереомерия определяется наличием C=N –связи или к примеру C=P-связи. В качестве четвертого заместителя рассматривают n-электроны на атоме азота (нольвалентный заместитель).

Цис,транс -изомерия, а также и син,анти -изомерия распространена в химии не только на соединения с кратными связями, но и на циклические и каркасные соединения.

Пример решения задачи

Молекулы промышленно важного углеводорода А (D H 2 = 13) в присутствии катализаторов образуют различные олигомеры:

1. Напишите структурные формулы А E , учитывая, что
M A : M B : M C : M D : M E = 1: 2: 3: 3: 4.

Из углеводородов А и В были получены изомерные углеводороды I VI согласно приведенной ниже схеме превращений:

2. Напишите структурные формулы I V , F О . чтите, что превращения F в G и K в L – изомеризации. Помните, что разные буквы не могут обозначать одно и то же вещество.

Решение задачи

  1. Для упрощения расчета составим таблицу, обозначив как а – общий объем алкенов в исходной смеси:

Конечный объем смеси = 0,25а + (7,17 − 1,75а ) + 0,75а = 5,15. Тогда а = 2,693 л » 2,7 л.

2. М (C n H 2 n ) = 10,1 / (2,7 / 22,4) = 84, то есть молекулярная формула C 6 H 12 .

3. Молекулы С содержат асимметрический атом углерода, то есть атом с четырьмя разными заместителями. Для алкенов C 6 H 12 это возможно лишь для 3-метилпентена-1:

При гидрировании С превращается в 3-метилпентан. Существует еще только 2 структурно изомерных алкена, также образующих этот продукт в ходе гидрирования:

На основании результата взаимодействия алкенов с HBr невозможно различить А и В , поскольку, согласно условию, основным продуктом в реакциях всех трех углеводородов является бромид Е . Однако взаимодействие с HBr в присутствие перекиси (ROOR ) протекает против правила Марковникова и приводит к образованию разных продуктов:

Бромид С1 под действием основания отщепляет HBr , превращаясь обратно в С .Точно так же, в третьем варианте отщеплениеHBr возможно единственным способом с образованием исходного алкена. Следовательно, это соединение А1 .ЭлиминированиеHBr возможно двумя путями только для продукта второй реакции:

Путь а – это обычное элиминирование по правилу Зайцева. Он приводит к образованию исходного алкена. Путь b – элиминирование «по Гофману». Протекание элиминирования по этому пути объясняется тем, что трет -бутилат калия – объемное основание. Поэтому атака на более стерически доступный атом водорода СН 3 группы протекает быстрее, чем атака на менее доступный водород группы СН. Итак, структуры соединений:

Основной продукт взаимодействия А , В и С с HBr имеет структуру:

Это результат обычного электрофильного присоединения HBr к А или В по правилу Марковникова. Из С соединение Е получается в результате перегруппировки первоначально образующегося вторичного карбокатиона в более устойчивый третичный:

4. Геометрические изомеры возможны для В :

Ранее были описаны структурная изомерия, обусловленная различным порядком чередования атомов и связей в молекулах, и два вида пространственной изомерии: поворотной и геометрической (цис-транс ), связанные с различным расположением фрагментов молекул одинаковой структуры в пространстве. Существует ещё один вид стереоизомерии – оптическая изомерия.

Оптические изомеры одинаковы по всем своим физическим и химическим свойствам и различаются лишь в двух отношениях.

1 При кристаллизации они образуют кристаллы, не имеющие плоскости симметрии и относящиеся друг к другу как предмет к своему зеркальному отображению. Это свойство позволило Пастеру открыть явление оптической изомерии. При кристаллизации винной кислоты он визуально обнаружил кристаллы двух различных типов и разделив их, выделил чистые стереоизомерные формы винной кислоты.

2 Оптические изомеры по разному относятся к поляризованному свету.

В луче света колебания электрического и магнитного векторов происходят во взаимно-перпендикулярных направлениях, а также перпендикулярно направлению распространению луча. Причём направление колебаний, например, электрического вектора хаотически меняется во времени, изменяя соответственно направление колебания вектора магнитного. В поляризованном луче колебания электрического и магнитного векторов совершаются для каждого в одной строго фиксированной плоскости, плоскости поляризации . При прохождении поляризованного луча через некоторые прозрачные жидкие и кристаллические вещества плоскость поляризации поворачивается. Соединения, вращающие плоскость поляризации поляризованного луча, называются оптически деятельными или оптически активными . Для количественного сравнения оптической деятельности различных веществ, вычисляют величину удельного вращения . Поскольку величина угла, вращения плоскости поляризации света помимо природы вещества зависит еще от температуры, длины волны света, толщины слоя вещества, через который проходит поляризованный свет, а для растворов ещё от растворителя и концентрации вещества, удельное вращение при постоянной температуре и длине волны света равно

где α – угол поворота плоскости поляризации при толщине слоя l и плотности вещества d , t – температура, D – фиксированная длина волны желтой линии из спектра натрия.

Для раствора

,

где С – концентрация раствора в граммах вещества, на 100 мл раствора.

Молочная кислота, получаемая при ферментации сахарозы с помощью бактерий, вращает плоскость поляризации света влево (против часовой стрелки). Она называется левовращающей или левой молочной кислотой и обозначается: (–) – молочная кислота.

Молочная кислота, вращающая плоскость поляризации света вправо , называется правой молочной кислотой и обозначается: (+) – молочная кислота. Эта оптическая форма молочной кислоты выделяется из мышц животных и называется мясомолочной кислотой.

В кристаллической фазе оптическая активность вещества связана с асимметрией строения кристалла . В жидкой и газовой фазах она связана с асимметрией молекул . В 1874 г. Вант-Гофф и Лебель – основоположники стереохимической теории – почти одновременно отметили, что оптически активные вещества содержат в своих молекулах хотя бы один углерод, связанный с четырьмя различными группами . Такие атомы углерода называются асимметрическими. Наличие в структуре молекулы асимметрического атома углерода является признаком асимметрии молекул соединения, а следовательно, и оптической активности вещества.

При рассмотрении оптической изомерии асимметрические атомы углерода обычно отмечают звездочкой (*):

Как видно из структурных формул, соединения, содержащие асимметрический атом углерода, не имеют плоскости симметрии.

Оптические изомеры молочной кислоты, т.е. (–) и (+)-формы этой кислоты, имеют различное пространственное расположение отдельных групп в молекуле и являются зеркальными отображениями друг друга. Отражение в зеркале всякого предмета , не имеющего плоскости симметрии, не тождественно предмету , а представляет собой его антипод (энантиомер).

Например, отражение человеческой фигуры в зеркале не тождественно оригиналу. Левая сторона человека представляется в зеркале как правая и наоборот. Из рисунка видно, что правая модель при наложении в пространстве не совмещается с левой. Это свойство объекта быть несовместимым со своим отображением в плоском зеркале обычно называют хиральностью .

Оптические изомеры, являющиеся зеркальным отражением друг друга называются антиподами (энантиомерами ). Они вращают плоскость поляризации в разные стороны на одинаковые углы .

Молочная и мясомолочная кислоты являются антиподами (энантиомерами). Эти стереоизомеры вращают плоскость поляризации в разные стороны на одинаковые углы.

Смесь равных количеств антиподов является оптически недеятельной из-за компенсации вращения и называется рацематом .

Так, молочная кислота, полученная синтетически, не влияет на поляризованный свет. Она состоит из смеси равных количеств левой и правой форм, является оптически недеятельной и обозначается (±) – молочная кислота.

Для удобства изображения пространственного строения оптически деятельных соединений введены так называемые проекционные формулы, предложенные Фишером , получаемые проецированием тетраэдрических моделей молекул на плоскость чертежа

При пользовании ими следует помнить, что перемещение проекционных формул, наложение их друг на друга разрешается только в плоскости чертежа . Подразумевается также, что группы сверху и снизу находятся за плоскостью чертежа, боковые – перед ней. Проекционные формулы правой и левой молочных кислот при соблюдении этих правил естественно не совмещаются.

Очень важным моментом оптической изомерии является то, что величина и направление вращения плоскости поляризации света не находятся в прямой очевидной зависимости от конфигурации (пространственного строения) соединения.

Например, сложные и простые эфиры, правой молочной кислоты, имея такую же конфигурацию, как и сама кислота, обладают левым вращением.

Отсюда следует, что знак вращения одного из членов ряда сходных по химическому строению веществ не может ещё служить характеристикой конфигурации и знака вращения остальных его членов.

Возникает вопрос, известны ли конфигурации оптических изомеров для различных веществ и как они определяются. Химические методы не позволяют установить абсолютную (истинную) конфигурацию антиподов из-за тождественности химических свойств антиподов. В то же время этими методами можно определить относительную конфигурацию оптических изомеров. Оптически активные соединения химическим путём можно превращать друг в друга без нарушения конфигурации. Тогда, если известна конфигурация исходного «эталонного» соединения, получаемое из него соединение будет иметь ту же конфигурацию.

В 1891 г. Фишер, а в 1906 г. Розанов предложили использовать в качестве такого относительного стандарта правый (+)–глицериновый альдегид . Ему произвольно приписали конфигурацию «D ». Его антиподу, (–)-глицериновому альдегиду , соответственно дана конфигурация «L ».

При этом появилась возможность устанавливать относительную конфигурацию оптических стереоизомеров химическим путём. В этом случае производным D(+)-глицеринового альдегида приписывается D-относительная конфигурация.

Например, относительная конфигурация молочной кислоты была установлена превращением глицеринового альдегида в молочную кислоту.

Оказалось, что D(+)-глицериновому альдегиду по конфигурации соответствует левая D(–)-молочная кислота.

Лишь в 1951 году рентгеноскопическим анализом была установлена абсолютная конфигурация D-глицеринового альдегида. Оказалось, что выбор его конфигурации был правилен. Таким образом, абсолютные конфигурации многих веществ в настоящее время стали известны.

Кроме описанной DL -номенклатуры для обозначения конфигурации оптических стереоизомеров используется так называемая RS -номенклатура Кана, Ингольда, Прелога , не связанная с конфигурацией опорного соединения («стандарта»). Она описана в учебной литературе.

Молочная кислота , СН 3 –СНОН–СООН

Молочную кислоту получают из нитрила молочной кислоты или молочнокислым брожением сахаристых веществ.

Используют её в кожевенном производстве и при крашении тканей.

Яблочная кислота

Это двухосновная, трёхатомная кислота. В химическом отношении она обнаруживает свойства α- и β-гидроксикислот, так как гидроксил по отношению к одной кислотной группе находится в α-положении, а по отношению к другой – в β-положении. При восстановлении она даёт янтарную кислоту, при дегидратации – малеиновую или фумаровую:

HOOC – CH – CH – COOH → HOOC – CH = CH – COOH + H 2 O

В яблочной кислоте имеется один асимметрический атом углерода, она оптически активна.

Левая и правая яблочные кислоты плавятся при 100 °С. Рацемат – при 130–131 °С. В природе встречается левая форма яблочной кислоты: в рябине, яблоках, винограде.

Винные кислоты (дигидроксиянтарные)

Они имеют одинаковую структурную формулу

и различаются пространственным строением.

Как следует из формулы, винная кислота имеет два асимметрических атома углерода. Число оптических изомеров для соединений, имеющих в структуре молекулы несколько асимметрических атомов углерода, находится по формуле N =2 n , где n – число асимметрических атомов углерода.

Следовательно, для винной кислоты следует ожидать существования четырёх оптических стереоизомеров:

В соответствии с правилами обращения с проекционными формулами, при наложении последних двух форм друг на друга они оказываются идентичными (одну из форм следует повернуть в плоскости чертежа на 180°). Таким образом, вместо четырех стереоизомерных форм винная кислота реализуется в трех. Кроме того, третий стереоизомер (III) оказывается оптически недеятельным из-за своей симметрии (на рисунке показана плоскость симметрии): вращение плоскости поляризации света, вызываемое верхним тетраэдром, полностью компенсируется равным по величине, но противоположным по знаку вращением нижнего. Перед нами пример стереоизомерной формы с асимметрическими углеродными атомами оптически недеятельной вследствие ее симметрии. Такие стереоизомеры называют мезоформами.

Стереоизомеры вещества, не являющиеся зеркальным отображением друг друга, называются диастереоизомерами. В соответствии с этим определением, первая и вторая пространственные формы винной кислоты являются диастереомерами по отношению к мезовинной кислоте (и наоборот).

Поскольку антиподы имеют одинаковое (только зеркально обратное) строение, их свойства за исключением отношения к поляризованному свету тоже одинаковы. Диастереомеры не одинаковы по своему пространственному строению, поэтому их свойства несколько различаются.

Заключая анализ пространственной изомерии винной кислоты, можно сказать, что она представлена двумя антиподами (формы I и II), их рацематом, называемым виноградной кислотой, и диастереоизомерной мезоформой (III).

Правовращающая, (+)-винная кислота весьма распространена в природе, особенно её много в соке винограда. При брожении виноградного сока она выделяется в виде винного камня, состоящего из кислого виннокислого калия.

Эта соль применяется в качестве протравы при крашении и печатании тканей.

Другая, калий-натриевая соль (+)-винной кислоты – так называемая сегнетова соль,

используется в качестве пьезокристалла в радиотехнике. Она входит в состав фелинговой жидкости, которая употребляется для аналитического определения восстановителей (например, альдегидов).

Мезовинная кислота получается вместе с виноградной при кипячении в течении нескольких часов (+)-винной кислоты с избытком едкого натра.

Лимонная кислота

Она довольно часто встречается в природе: в свекле, крыжовнике, винограде, лимонах, малине, листьях табака. Оптически недеятельна.

Лимонная кислота используется в пищевой промышленности, при крашении, в фотографии, для консервирования крови и т.д.

Альдоновые кислоты

Альдоновые кислоты – это полигидроксикарбоновые кислоты общей формулы HOCH 2 n COOH, формально являющиеся продуктами окисления альдегидной группы углеводов (альдоз). Наиболее типичным лабораторным методом синтеза альдоновых кислот является окисление легкодоступных альдоз бромом в его водном растворе.

Альдоновые кислоты и их производные играют важную роль в синтетической химии моносахаридов.

Методы разделения рацематов на оптически активные компоненты

В настоящее время стремительно растет потребность в энантиомерно чистых веществах для получения современных высокоэффективных медицинских препаратов, а также нужд сельского хозяйства и защиты лесов: получения новых высокоактивных инсектицидов, гербицидов, фунгицидов и других веществ избирательного действия для борьбы с вредными организмами. Получение энантиомерно чистых веществ для этих целей возможно либо на путях разработки методик их полного химического синтеза (ряд достижений в этой области отмечен присуждением Нобелевских премий по химии), либо разделением рацемических смесей. Рассмотрим принципы некоторых методов разделения рацематов на оптически активные компоненты.

Механический отбор. При кристаллизации рацематы иногда кристаллизуются отдельно в виде правой и левой форм. Причем их кристаллы по форме относятся друг к другу как предмет к своему зеркальному отражению. В этом случае их можно отобрать механически по внешнему виду.

Биохимическое разделение. Оно основано на том, что микроорганизмы в процессе своей жизнедеятельности способны потреблять предпочтительно лишь один из оптических изомеров. Обычно эта оптическая форма более распространена в природе. Поэтому при размножении и прорастании грибков в растворе рацемата через некоторое время остается только одна оптически активная форма.

Способы, основанные на различии свойств диастереомеров

Так, соли антиподов оптически деятельной кислоты с одним и тем же оптически деятельным основанием должны давать диастереомеры различной растворимости. Это позволяет разделить их кристаллизацией.

Изучение гидроксикислот имело исключительно большое значение для развития науки о пространственном строении молекул – стереохимии . Особенностью пространственного строения многих гидроксикислот является наличие атома углерода, имеющего четыре различных заместителя. Например, молочная кислота:

Такие атомы называются ассимметрическими углеродными атомами или хиральными (хиральными центрами). В формулах асимметрические углеродные атомы обозначаются звездочкой.

Молекулы, имеющие асимметрические углеродные атомы, могут быть представлены в виде двух пространственных изомеров, различающихся как предмет и его зеркальное отображение:

Изомеры, отличающиеся друг от друга только расположением атомов в пространстве, называются стереоизомерами . Расположение атомов, характеризующее определенный стереоизомер, называется конфигурацией . Стереоизомеры, различающиеся как предмет и его зеркальное отражение называются энантиомерами . Энантиомеры являются оптически активными веществами – они способны вращать плоскость поляризации света. Причем из пары энантиомеров один вращает плоскость поляризации вправо. Такой изомер называется правовращающим и обозначается знаком (+). Другой изомер вращает плоскость поляризации влево. Такой изомер называется левовращательным и обозначается знаком (-). Изомеры, отличающиеся только знаком вращения, называются оптическими антиподами .

При изображении оптически активных соединений пользуются проекционными формулами, представляющими собой проекции тетраэдрических моделей соответствующих молекул на плоскость чертежа:

При изображении проекционных формул принимается, что группы, расположенные сверху и снизу, находятся за плоскостью чертежа, а группы, расположенные слева и справа – перед плоскостью чертежа. Поэтому формулы нельзя поворачивать в плоскости чертежа на 90 0 и можно поворачивать на 180 0 . Например:

Соединения 1 и 2 являются оптическими антиподами, поскольку 2 получено путем поворота 1 на 90 0 . Формула 3 получена из 1 поворотом на 180 0 , поэтому 3 эквивалентно 1 .

Для направления и величины вращения плоскости поляризации не существует определенных закономерностей взаимосвязи со строением оптически активных соединений. Можно отмечать как факт, что молочная кислота, содержащаяся в мышцах, вращает плоскость поляризации вправо и известна как правовращающая (+). Также как факт принимается то, что молочная кислота, образующаяся при брожении сахарозы в присутствии бактерий, вращает плоскость поляризации влево и называется левовращающей (-).

Какими-либо химическими методами невозможно установить, как в молекулах оптических изомеров атомы расположены относительно друг друга, соответственно невозможно установить, какова природная или абсолютная конфигурация оптически активного вещества.

Химики могли ограничиться только установлением конфигурации оптически активных веществ относительно какого-либо оптически активного вещества, принятого за стандарт. Соответственно пространственное строение оптически активных веществ характеризовалось относительной конфигурацией . Основой для такого подхода было то, что можно провести превращение вещества, принятого за стандарт, в интересующее вещество таким образом, чтобы конфигурация асимметрического атома углерода не нарушалась.

В 1906 году в качестве стандарта был избран глицериновый альдегид, поскольку он является простейшим полигидроксикарбонильным соединением, способным к оптической изомерии. Правовращающему глицериновому альдегиду была приписана следующая конфигурация, обозначенная как «D»:

Соответственно его оптическому антиподу была приписана следующая конфигурация и обозначена как «L»:

В 1951 году методами рентгеноструктурного анализа было показано, что выбранная наугад абсолютная конфигурация глицеринового альдегида оказалась правильной.

По абсолютной конфигурации глицеринового альдегида были установлены относительные конфигурации других оптически активных веществ. Так, относительная конфигурация молочной кислоты была установлена по D-(+)-глицериновому альдегиду следующим образом:

Окислением альдегидной группы в карбоксильную и восстановлением гидроксиметиленовой группы в метильную было установлено, что D-конфигурации соответствует левовращающая молочная кислота.

Подобным образом были установлены относительные конфигурации многих веществ.

Так, для оптически активной яблочной кислоты, вращающей плоскость поляризации вправо, установлена следующая конфигурация относительно D-(+)-глицеринового альдегида:

При обработке D-(+)-яблочной кислоты пятихлористым фосфором получается L-(-) хлорянтарная кислота:

Т.е. при этом произошло обращение конфигурации.

Если на L-(-) хлорянтарную кислоту подействовать влажной окисью серебра, то получается L-(-)-яблочная кислота:

Однако, если яблочную кислоту получить присоединением воды к фумаровой или малеиновой кислоте, то получается продукт, не обладающий оптической активностью:

Так как строение яблочной кислоты обусловливает обязательную оптическую активность, то в случае гидратации непредельных кислот получается смесь равных количеств двух оптических изомеров.

Совокупность равных количеств энантиомеров называется рацемической модификацией илирацематом .

Рассмотренные три случая различаются по механизмам образования продуктов. Рацемическая модификация образуется в том случае, если реакция протекает через стадию устойчивого карбкатиона, атака которого возможна с двух сторон.

Если атака карбкатиона возможна только с одной стороны, то продукт сохраняет конфигурацию. Такой случай возможен в дикарбоновых кислотах, где за счет взаимодействия карбоксильных групп доступ к реакционному центру возможен только с одной стороны.

При нуклеофильном замещении, протекающем по механизму S N 2, происходит обращение конфигурации – так называемое Вальденовское обращение.

Усложнение строения оптически активных веществ повлекло необходимость систематизации обозначений конфигурации, что привело к появлению R, S-системы. Согласно этой системе, сначала определяют старшинство, или последовательность заместителей, связанных асимметрическим атомом, исходя из правил старшинства.

1. Если с асимметрическим атомом углерода связаны четыре различных атома, то старшинство определяется порядковым номером в таблице Менделеева: чем больше номер, тем старше заместитель.

2. Если старшинство нельзя определить по первым атомам, связанным с асимметрическим атомом, то старшинство аналогично определяют по вторым атомам и т.д.

3. Если атомы, связанные с асимметрическим атомом углерода, имеют разное количество заместителей, построенных из атомов с одинаковым порядковым номером, то старшим является атом, имеющий большее число заместителей.

4. Если атом соединен двумя или тремя связями, то его считают за два атома. Из этого следует, что СООН старше СНО и СНО старше СН 2 ОН.

После определения старшинства молекулу располагают таким образом, чтобы самая младшая группа была направлена от наблюдателя, и рассматривают расположение оставшихся групп. Если старшинство убывает по часовой стрелке, то конфигурацию обозначают символом «R»– от латинского слова «правый». Если старшинство убывает против часовой стрелки, то конфигурацию обозначают символом «S» – от латинского слова «левый».

При этом R, S-система отражает абсолютную конфигурацию асимметрического атома углерода. Согласно этой системе, энантиомеры глицеринового альдегида будут обозначены следующим образом:

Полное название оптически активного соединения отражает конфигурацию и направление вращения. Рацемическую модификацию можно обозначать символом (R, S), например: (R,S)-яблочная кислота.

Каждому асимметрическому атому углерода соответствуют два антипода и один рацемат. Общая формула количества оптических изомеров N =2 n , где n – число асимметрических атомов углерода. Однако для дигидроксиянтарной кислоты, имеющей два хиральных центра

наблюдается аномалия.

Дигидроксиянтарные кислоты называются винными кислотами . Оптически активные изомеры винной кислоты можно изобразить следующими проекционными формулами:

Рацемическая смесь винных кислот (R,S)-винная называется виноградной кислотой. (+)-Винная кислота содержится в соке ягод. Она называется еще виннокаменной, поскольку ее калийная соль выделяется в виде винного камня при брожении виноградного сока. (-)-Винную кислоту получают из виноградной кислоты.

Приведенные примеры говорят о двух изомерах и одном рацемате. По формуле должны быть еще два изомера. Этим изомерам должны соответствовать следующие проекционные формулы:

Если одну из проекционных формул мезовинной кислоты повернуть на 180 0 , то проекции совместятся. Т.е. формулы представляют один и тот же стереоизомер. Его особенностью является то, что вращение, вызываемое одним асимметрическим атомом углерода, компенсируется вращением в противоположную сторону, что обусловлено другим атомом углерода.

В данном случае оптическая неактивность стереоизомера обусловлена симметрией молекулы.

При этом мезовинная кислота не является зеркальным отображением винных кислот. Стереоизмеры, не являющиеся зеркальным отображением, называются диастереомеры .

Оптические изомеры разделяют тремя основными способами. Два первые из них являются исторически сложившимися. Практическое значение в настоящее время имеет третий способ.

1. Если оптически активные вещества можно выделить в форме кристаллов, то обычно эти кристаллы выглядят так же, как предмет и его зеркальное отображение. Именно таким образом Пастер в 1848 году разделил впервые кристаллы натрий-аммонийной соли винной кислоты на две порции кристаллов, отличающихся как предмет и его зеркальное отражение.

2. Микроорганизмы построены из оптически активных веществ, поэтому потребляют обычно один из двух энантиомеров.

3. Кристаллизация диастереомеров.

Особенностью диастереомеров является их различная растворимость в различных растворителях. Поэтому из смеси двух оптических изомеров получают два диастереомера, которые можно разделить кристаллизацией. И далее регенерировать оптически активные вещества. Например, на рацемическую смесь оптически активной кислоты действуют оптически активным основанием. Образуются две диастереомерные соли, которые разделяют кристаллизацией. Далее действуют минеральной кислотой и выделяют исходные кислоты по отдельности. В качестве оснований используют природные вещества, обладающие хиральными центрами.

Аминокислоты