Время биологическое и время субъективное: сравнительные характеристики. Биологические часы организма человека

равномерная длительность класса соравномерных биологических процессов живого организма. Мысль о том, что природа живых организмов обусловлена прежде всего спецификой временной организации протекающих в них процес сов, была высказана еще в середине XIX века Карлом Эрнстом фон Бэром1. Некоторые исследователи пытались ввести в научный обиход понятия «биологическое время» (Вернадский В.И.), «физиологическое время» (леконт дю Нуйи), «органическое время» (Бакман Г.). Однако недостаточная разработанность философского учения о времени не позволила определить вводимые понятия таким образом, чтобы ими можно было пользоваться при экспериментальных и теоретических исследованиях подобно тому, как в физике используется понятие «время». Ближе всего к адекватному пониманию биологического времени подошли исследователи, которые обнаружили, что если в качестве самотождественной единицы длительности использовать периоды какихлибо повторяющихся процессов живого организма, то можно выявить специфические закономерности его развития. Особенно значительные результаты на таком пути исследований получены Т.А. Детлаф1, которая в 1960 г. совместно с братом - физиком А. А. Детлафом - выступила с предложением использовать при изучении эмбрионального развития пойкилотермных животных в качестве единицы измерения времени длительность одного митотического цикла периода синхронных делений дробления, обозначенную ими? и 0 получившую по инициативе А.А. Нейфаха наименование «детлаф»2. Т.А. Детлаф разработала методику хронометрирования развития живых организмов в единицах биологического времени? и использовала ее 0 при изучении многих видов пойкилотермных животных3. Однако до последнего времени оставался открытым вопрос о правомерности квалификации подобных единиц длительности как единиц особого типа времени, поскольку, будучи длительностями периодов циклических процессов живых организмов, они подвержены случайным колебаниям, тогда как на протяжении всей истории развития понятия времени равномерность рассматривается как одно из важнейших свойств времени. Анализ понятия и критериев равномерности убедительно показал, что равномерность есть соотносительное свойство сравниваемых между собой материальных процессов и что в принципе возможно существование неограниченного множества удовлетворяющих критериям равномерности классов соравномерных процессов (КСП), каждый из которых в соответствующей области материальной действительности обладает свойствами равномерности и пригоден для введения единиц длительности и практического измерения времени1. При этом выяснилось, что КСП могут существовать в таких целостных высокоинтегрированных материальных системах, в которых материальные процессы настолько тесно взаимосвязаны и сопряжены, что ведут себя как единый поток, синхронно и пропорционально ускоряясь и замедляясь под воздействием различных и, в том числе, случайным образом изменяющихся факторов. Именно такого рода системами являются живые организмы. О наличии в живых организмах классов соравномерных биологических процессов свидетельствуют исследования Т.А. Детлаф и ее коллег. Они установили, что с изменением температуры среды дли тельности различных этапов эмбрионального развития пойкилотермных жи вотных изменяются пропорционально и что эта закономерность имеет фунда ментальный характер, охватывая процессы всех структурных уровней органи зации эмбриона. Как отмечает Т.А. Детлаф, «... с изменением температуры про порцио нально изменяется длительность процессов, имеющих самую разную природу и осуществляющихся на разных уровнях организации организма: внут риклеточном (молекулярном и ультраструктурном), клеточном (при делении клеток и их дифференцировке), на уровне морфогенетических движений, про цессов индук ции и органогенеза»2. Иными словами, вся совокупность биологических процессов, из которых складывается развитие эм бриона, ведет себя как единый целостный процесс. В нем имеются как сравнительно медленные (протекающие на кле точном уровне процессы деления клеток и их дифференци ровка), так и весьма быстрые, протекающие на внутриклеточном, молекуляр ном уровне, к которым относятся, например, ферментативные реакции внутри клеточного метаболизма. Достаточно очевидно, что если бы на каких-то структурных уровнях организации эмбриона нарушалась синхронность и пропорциональность изме нения темпов биологических процессов, то это разрушило бы закономерное течение всего потока процессов формирования и раз вития живого организма. Указывая на это обстоятельство, Т.А. Детлаф подчеркивает: «Не будет преувеличе нием, если мы скажем, что без этой способности пойки лотермные организмы вообще не могли бы существовать в меняющихся усло виях внешней среды: если бы раз ные компоненты комплекса процессов, из ко торых складывается любой этап разви тия, изменялись асинхронно, то это при водило бы к возникновению нарушений нормального развития, а на более поздних стадиях - к на рушению нормального функционирования организма. Не случайно, что одной из первых реакций зародышей на приближение к границам оптимальных тем ператур является десинхронизация отдельных процессов развития» (Там же). Биологическое и физическое время взаимно стохастичны, поскольку единицы биологического времени представляют собой длительности таких повторяющихся биологических процессов, которые, будучи измеренными в единицах физического времени, меняются случайным образом, в зависимости от случайных изменений характеристик окружающих условий. Процессы функционирования и развития живых организмов даже генетически достаточно далеких друг от друга биологических видов при хронометрировании их в единицах собственного биологического времени подчиняются единым законам функционирования и развития2. В настоящее время становится все более очевидным, что раскрыть сущность жизни и научиться математически описывать ее как особое движение мате рии невозможно без введения в понятийный аппарат биологии понятия биологического времени. Хронометрируя и теоретически описывая биологические процессы в единицах биологического времени, можно будет пробиться сквозь внешнюю стохастичность процессов к тем динамическим законам, по которым в соответствии с заданной генетической программой идет развитие организма. Такой вывод подтверждается результатами более чем столетних исследований развития живых организмов и протекающих в них биологических процессов с использованием специфических единиц длительности. Впервые особую единицу длительности, названную им «пластохроном», ввел немецкий ботаник E. Аскенази1, который определил ее как период заложения одного зачатка метамера2 «стеблевой единицы». В дальнейшем единицу измерения длительности «пластохрон» применяли К. Торнтвейт1, Д.А. Сабинин2, Е.Ф. Марковская и Т.Г. Харькина (Марковская, Харькина 1997) и др. При изучении эмбрионального развития живых организмов одним из первых особые единицы длительности предложил И.И. Шмальгаузен3. Однако использованные И.И. Шмальгаузеном единицы длительности, связанные с определенным изменением объема зародыша, оказались применимы только при изучении роста организма, а не его развития. Некоторые исследователи в качестве единицы длительности используют ту или иную долю от полного времени эмбрионального развития. К таким единицам относится, например, «1% DT» (DT - Development Time - время развития), которая применялась при изучении развития эмбрионов осетровых рыб (Детлаф, Гинзбург, 1954), домашних птиц (Еремеев, 1957, 1959), насекомых (Striebel, 1960; Ball, 1982; Mori, 1986). И хотя она применима только при изучении организмов, которые выходят из яйцевых оболочек на одной и той же стадии развития, тем не менее позволяет открыть многие закономерности эмбрионального развития исследуемых животных. Так, Г.П. Еремеев, изучая зародышевое развитие разных видов птиц, время наступления этапов развития выразил в долях периода от откладки яйца до вылупления. В результате оказалось, что у таких домашних птиц, как куры, утки, гуси, индейки, а также у та ких птиц, как чибис, голубь домашний, крачка черная, одни и те же эта пы зародышевого развития при измерении времени указанным выше спо собом наступают «одновременно», тогда как в единицах астрономиче ского времени разница в длительности от дельных этапов развития у раз ных птиц достигает многих суток. В начале 80-х годов Ю.Н. Городиловым было предложено в качестве единицы длительности при изучении временных закономерностей развития костистых рыб использовать «отрезок времени, за который происходит приращение единичного сомита в течение метамеризации комплекса осевого зачатка зародыша от 1 до 60 сомитов» (Городилов, 1980, с. 471). В бактериологии существует мнение, что «для оценки процессов роста и развития бактерий целесообразно использовать не привычное и стабильное фи зическое время, а вариабельное время генерации (?)...»1. К сожалению, введенные рядом биологов единицы биологического времени слишком крупны для того, чтобы математически моделировать более фундаментальные биологические процессы живого организма2. Имеются веские основания считать, что биологические (биохимические и биофизические) процессы живого организма начинаются с каталитических циклов ферментативных реакций внутриклеточного метаболизма. Еще в начале 60-х годов ХХ столетия Христиансен привел убедительные аргументы в пользу когерентности каталитических циклов всех участвующих в катализе конкретной биохимической реакции молекул фермента3. При этом естественно предположить, что большую часть периода каталитического цикла макромолекулы фермента находятся в стабильных конформациях, а реагирующая среда пребывает в жидкокристаллическом состоянии4, при котором максимально заторможены перемещения молекул в реагирующей среде. лишь на короткие, строго дозированные моменты конформационных переходов макромолекул фермента реагирующая среда приходит в жидкое состояние, возбужденное конформационными изменениями макромолекул фермента1. При этом интенсивно протекают процессы диффузии молекул в реагирующей среде. Таким образом, вполне правомерным является представление, согласно которому каталитические циклы всех участвующих в биохимической реакции молекул фермента протекают синхронно, в силу чего каталитический цикл представляет собой обладающий биологическим значением элементарный акт биохимической реакции, а длительность этого цикла - далее неделимый квант биологического времени. В пределах квантов биологического времени нет биологических процессов, а имеют место физические взаимодействия атомов и элементарных частиц и физико-химические процессы, однако они не могут свободно протекать в силу структурных и организационных ограничений, которые накладывает на них живая клетка. В частности, нормальному течению физических и физико-химических процессов мешает принципиальная стохастичность длительности каталитических циклов, которая разрушает нормальное функционирование во внутриклеточной реагирующей среде физических законов и как бы переподчиняет эту среду действию биологических законов. Биологическое время исторично и иерархически многоуровнево. В процессе онтогенетического развития каждый живой организм, начиная с единственной оплодотворенной яйцеклетки, постепенно превращается в сложную иерархически многоуровневую материальную систему со специфическими закономерностями временной организации процессов на разных уровнях. Вопрос о том, являются ли биологические времена разных иерархических уровней лишь разными масштабными уровнями одного и того же времени или на разных уровнях возникают качественно разные биологические времена, на сегодняшний день остается открытым. Что касается биологического времени надорганизменных структур живой материи, то оно качественно отличается от биологического времени живых организмов. Основными единицами времени надорганизменных структур живой материи, видимо, могут служить длительности жизни следующих друг за другом поколений соответствующих живых организмов, как предполагают многие исследователи. При этом речь должна идти не об усредненной на все времена длительности жизни поколений живых организмов, а о длительности жизни поколений, реально сменяющих друг друга в непосредственно текущем настоящем времени, поскольку именно изменения (в единицах физического времени) длительностей существования следующих друг за другом поколений, рассматриваемых как конгруэнтные единицы, превращают их в единицы специфического времени, тогда как усредненные и содержащие постоянное число единиц физического времени периоды жизни поколений представляют собой единицы физического времени. В современной биологии, как и во всех естественных науках, используется Международная система единиц физических величин (СИ). Переход в биологии от физического к биологическому времени равносилен замене одной из фундаментальных единиц - секунды - на соответствующую единицу биологического времени. В силу взаимной стохастичности физического и биологического времени, производные величины, в размерностях которых имеется размерность физического времени «секунда», превратятся в стохастические переменные величины. Аналогичным образом в пределах биологических систем и процессов перестанут существовать и все физические константы, в размерностях которых фигурирует «секунда». По мере познания живой материи и выявления собственно биологических законов проявятся свои, биологические производные величины и константы, в размерностях которых будут находиться размерности биологического времени. В частности, с переходом при математическом описании биологических процессов к биологическому времени лишится смысла понятие «равномерного пространственного перемещения» и возникнет необходимость разработки представления о «биологическом пространстве» живого организма, равные расстояния в котором определяются не в пространственных, а во временных единицах. См.: «Историчность времени»; «Многоуровневость времени»; «Относительность равномерности времени»; «Физическое время». лит. Детлаф Т.А. Температурно-временные закономерности развития пойкилотермных животных. - М.: Наука, 2001. - 211 с. Хасанов И.А. Феномен времени. Часть I. Объективное время. - М., 1998. Хасанов И.А. Время: природа, равномерность, измерение. - М.: Прогресс Традиция, 2001. Хасанов И.А. Биологическое время. - М., 1999. - 39 с. // http://www.chronos. msu.ru/RREPORTS/khasanov_biologicheskoe.pdf Ильгиз А. Хасанов

Биологическое время

Перед тем, как перейти к биологическому времени, сделаем некоторые уточнения. Чем более развита система, тем важнее для нее внутренние механизмы развития. А они опираются на прошлый опыт и на возрастающую роль предвидения и проектирования будущего.

Вот почему у высокоорганизованных систем (в отличие от простых) наряду с базовыми - относительно универсальными временем и пространством - существуют собственныевнутренние время и пространство.

Собственное время характеризует самые важные процессы, протекающие в биологическом организме.

Биологическое время – это собственное внутреннее время биосистемы, которое характеризует прежде всего наиболее важные процессы жизнеобеспечения.

Оно обладает ярко выраженной цикличностью. Биоциклы (в отличие от примитивных циклов физических систем) связаны с информационными процессами, а также с ростом (или, по крайней мере, с сохранением) негентропии. Физические циклы гораздо менее обусловлены прошлыми взаимодействиями, чем настоящими. А для биоциклов играют важную роль как те, так и другие.

Своеобразной временнóй формой и мерой биологического развития являются биологические поколения. Их смена – существенная видо-родовая характеристика .

Биологические организмы генетически наследуют биоциклы, жизненно важные для прошлых поколений. В этих биоциклах запечатлен важнейший опыт успешной адаптации к окружающей среде. Со временем к ним добавилась и новая характеристика - опережающее отражение. Опираясь на переработку новой непосредственной информации, организм заранее готовится к наиболее вероятному (хотя и не циклическому) событию в будущем.

Итак, и у растений и у животных есть некоторые биоциклы, связанные с циклами в окружающей природе. На них влияют суточные и сезонные циклические перемены, периодические изменения солнечной активности и пр.

Перечисленные природные ритмы воздействуют и на человека. На его биовремя влияют сезонные и суточные циклы. Также влияет земное магнитное поле. Оно «пульсирует» с частотой 8-16 колебаний/сек. Это совпадает с a-ритмом биопотенциалов головного мозга.

Сильное воздействие на многие земные процессы оказывает солнечная активность. Она имеет одиннадцатилетнюю цикличность. На вторые сутки после мощных вспышек на Солнце почти в 3 раза возрастает (при прочих равных условиях) число автоаварий и самоубийств. Лебедев. Н и Ж, 1968 №3

Однако, человеку присуще и то, что не свойственно его собратьям по животному царству. Он зависит от циклических процессов в социокультурной среде.

Более того, социокультурные ритмы способны оказывать воздействие на окружающую природную среду. Антропогенная деятельность нарушает некоторые естественные биогеохимические процессы и циклы в биосфере.

Перейдем к циклам, на которых в значительной мере сказываются внутренние для организма причины. Для ребенка в материнской утробе важнейшим биоритмом является ритм своего и материнского сердца. Поэтому новорожденный радуется музыкально-звуковым воздействиям с подобным ритмом. Характерным примером внутренне обусловленной биоритмики является женский менструальный период (примерно 28 суток), полуторачасовая периодичность ночных эрекций как у мужчин, так и у женщин.

Определенные физиологические ритмы характеризуют и функционирование мозга. Современная электроэнцефалограмма не может определить, о чем думает человек. Однако она хорошо показывает степень умственного напряжения. Четко выделяются такие ритмы:

1) d (дельта) - ритм – глубокий сон (самые медленные импульсы);

2) a (альфа) - ритм – спокойное бодрствование при закрытых глазах, легкая дремота; при открывании глаз исчезают (выше говорилось, что на этот ритм также влияет "пульсация" магнитного поля Земли);

3) q (тета) - ритм – ритм озабоченности;

4) b (бета) - ритм – внимание, напряженная активность, мышление (50-1000 импульсов/сек).

Описанным ритмам мозга соответствуют колебания электромагнитных полей, которые в 100 миллионов раз слабее, чем уровень магнитного поля Земли.

Как показывают наблюдения, «кульминационные взлеты» мышления происходят довольно редко, минут 5 за день. Свидетельствующие о них веретенообразные зубцы на кривых линиях появляются лишь при напряженных размышлениях, острых дискуссиях, решении трудных задач.

Согласно распространенным представлениям, существуют жизненные ритмы, которые имеют общую причину происхождения, но протекают на разных уровнях: 23 дня – физиологический цикл, 28 – эмоциональный, 33 – ментальный (интеллектуальный). Чем они обусловлены? И с какого момента вести отсчет?

Рассматриваемые биоритмы начинают свои колебания с мощного выброса в кровоток адреналина и первого вздоха новорожденного. Словно мать-природа, выпуская ребенка на жизненную орбиту, форсирует в этот ответственный момент важные режимы его жизнедеятельности.

Описанные циклы проявляются в течение всей жизни человека, обусловливая подъемы и спады соответствующих форм активности. При совпадении 3-х биоциклических минимумов или критических дней некоторые японские фирмы освобождают сотрудников от работы, требующей повышенной концентрации внимания. В одном из наших городов на ЭВМ вычисляли трудные дни для водителей городского транспорта и оставляли их работать в гараже – в результате аварийность стала заметно меньше.

При совпадении максимумов трёх биоциклов человек словно летает на крыльях. Женщина в такой период «коня на скаку остановит, в горящую избу войдет». Но будет лучше, если жизнь ей позволит в это время заниматься творчеством, побивать мировые рекорды или рожать…

Хронобиология (биоритмология) изучает биологическое время во всех его многообразных формах. Цивилизация нарушает природные ритмы. Особенно это на себе чувствуют люди, вынужденные работать по ночам (например, метростроевцы, астрономы) или те, кто часто меняет свое местопребывание и соответственно - часовые пояса (летчики, космонавты, спортсмены).

Давно замечено, что если человек оказывается непосредственно в природной среде, он возвращается к естественным ритмам. Иногда им лучше следовать и в интенсивно нервной городской жизни. Чередуя напряженную работу с отдыхом, можно добиться гораздо большего, чем изнуряя себя беспрерывным трудом. Не случайно в некоторых офисах стали появляться кушетки для релаксации.

И все же будем помнить, что мы обладаем великим даром – силой воли. Человек может приказать себе, сказав «Да», когда усталый организм подсказывает «Нет». Либо наоборот, человек может сказать себе: "Нет!", хотя организм просит: "Да!" И в результате добиться поставленной цели.



Психическое время

Рассмотрим теперь осознанно или неосознанно переживаемое психическое время . Оно субъективно и не является простой копией реального, объективного времени, хотя в той или иной мере обусловлено им.

Психические время и пространство в наибольшей мере связаны с ценностно-ориентированной жизнедеятельностью человека, миром его чувственных восприятий и представлений. Можно измерять время часами, а можно степенью своего нетерпения или блаженства (“счастливые часов не замечают”). Можно измерять расстояния километрами , а можно степенью своей усталости .

Большое по величине физическое время в психическом времени может показаться совсем маленьким, а маленькое - очень большим. Было мудро подмечено, что измерять жизнь годами - это все равно что измерять книгу числом страниц, картину - квадратными метрами, а скульптуру - килограммами”.

Простейшими и эволюционно первичными психическими формами, которые в той или иной мере соответствуют природным (физическим и биологическим) пространству и времени, являются неосознаваемые пространственные восприятия и временные представления .

Животные, младенцы и спящие люди переживают только непосредственно данное время. Человеческое сознание впервые позволяет делать то, что невозможно на бессознательном уровне: дискурсивно различать прошлое, настоящее и будущее. Однако когда речь идет о непосредственно переживаемом людьми психологическом времени , то можно в известном смысле согласиться с Аврелием Августином (354-430), который считал, что правильнее говорить не “прошедшее”, “настоящее” и “будущее”, а “настоящее прошедшего”, “настоящее настоящего” и “настоящее будущего”.

Целеполагающая и целереализующая деятельность позволяет человеку сделать более насыщенными связи между прошлым, настоящим и будущим, глубже и полнее сомкнуть их в единую бытийную целостность.

Психическое время символично . В нем существуют особые мгновения - мгновения Начала и Конца (но для природы эти мгновения мало чем отличаются от других, для нее - это рядовые мгновения). Новый Год жизни. Новый Год календаря. Новый Год в учебе, творчестве, любви. В такие мгновения мы словно на перевале. Можно оглянуться назад. Постараться предугадать, что ждёт впереди.

Почему после каждого дня рождения как бы начинается новый подъем жизненных сил? Ведь это редко совпадает с максимумами всех трех биоритмов – физиологическим, эмоциональным и ментальным. Дело в том, что здесь проявляется иная, «ноосферическая» (социокультурная) цикличность, связанная со сменой календарных циклов. А это означает, что в данном случае в огромной мере влияет психологический настрой, установка.

На психическое время накладывают отпечаток специальность, а также возраст. Антрополог может сказать: - Совсем недавно, в прошлом тысячелетии... А от ребенка можно услышать: - Очень-очень давно, несколько дней назад...

Основное время детства тянется очень медленно. Попробуем объяснить, почему. Скажем, ребенку исполняется 2 года. Сколько ему ждать следующего дня рождения? – Один год, - скажет умудренный жизненным опытом взрослый. И будет по-своему прав. Но для ребенка это половина уже прожитой жизни! Полжизни ждать следующего дня рождения…

Итак, первая причина медленного времени детства в том, что «текущее время» соотносится со всей жизнью. Вторая причина: время всегда невольно измеряется и переживается через события; много происходит событий – значит, много проходит времени (и наоборот). А для ребенка почти все происходящее воспринимается как Событие, так как еще не утратило своей необычности и новизны.

Однако с возрастом переживание времени меняется. Но какие психофизиологические предпосылки определяют появление временного аспекта переживаемых событий?

Многочисленные наблюдения показали, что вначале у ребенка образуются независимые друг от друга временны е переживания, причем каждое из них связывает определенное желание и его успешный или неуспешный результат. Примерно в полтора года формируется расплывчатый, но более общий временной индикатор - понятие «теперь», а в два года - понятие «скоро». Лишь трехлетний ребенок начинает уверенно различать такие более отвлеченные понятия, как «не сегодня», «завтра», «вчера».


Но еще в четырех - пятилетнем возрасте ребенок, по наблюдениям Ж. Пиаже, одновременное считает неодновременным : видя, что два объекта одновременно покинули один и тот же пункт и одновременно прибыли в два конечные места, он соглашается, что «старт» был одновременный, но отрицает одновременность «финиша». Ребенок считает, что одновременным может быть только происходящее в одном и том же месте, а в разных местах может существовать только разное время. Это является одним из проявлений синкретизма .

В отличие от физического и других объективных форм времени, которые необратимы (анизотропны), психическое время обратимо. Бесценный дар нашей души – способность мысленно покидать нынешнее время. Можно на крыльях фантазии слетать в будущее: - Что день грядущий мне готовит?

Можно заново пережить прошлое: - Куда, куда вы удалились, весны моей златые дни?

Особую смысловую значимость жизни придает знание о своей смертности. Осознаваемая конечность во времени – общий людской удел. “Мементо мори” - этот афоризм появился еще в древности.

Важно воспринимать свою жизнь как определенное - пусть маленькое - звено истории. Ощущать себя чьим-то продолжением и чьим-то началом. Принимать на себя долю общей ответственности за судьбы мира. И тогда появляется свет как в начале, так и в конце туннеля.

Психическая жизнь измеряется деятельностью, поступками, событиями.

Мы знаем - время растяжимо

Оно зависит от того,

Какого рода содержимым

Вы наполняете его (Маршак )

Связаны ли в человеке переживаемые им психические время и пространство между собой? Безусловно, да. Напомню, что в эволюционном и онтогенетическом развитии сначала возникает переживание пространства, и лишь затем – на его базе и в связи с ним - переживание времени. Расщеплять их может лишь абстрагирование или болезнь. Существует множество процессов, в которых в той или иной мере проявляется эта связь переживания пространства и переживания времени. Вот одно из подобных проявлений. В некоторых странах перед контрольно-пропускными пунктами или опасными участками на дорогу наносят особым образом расположенные поперечные полосы («зебру»): сначала расстояния между полосами велики, но постепенно сокращаются примерно до метра. Водителю, который едет с постоянной скоростью, кажется, что его машина стремительно разгоняется, и он подсознательно начнет отпускать акселератор и притормаживать.

Говоря об особой связи пространства и времени в художественно-эстетических переживаниях, М. М. Бахтин (не без влияния идей Эйнштейна) ввел в культурологию и литературоведение понятие "хронотоп" (от греч. chronos - время и topos - место).

В обостренно переживаемой форме хронотопичны, скажем, футбольный матч, тушение пожара, театральный спектакль и другие подобные события, в которых пространство и время, не утрачивая своей самобытности, переплетаются в чувственно не разделимую целостность . Однако и здесь многое зависит от «накала страстей». Если футболисты, экономя силы, просто тянут время, а актеры бездушно проговаривают заученные фразы, то пространственно-событийные компоненты отодвигаются на задний план, а на авансцену выходит скука – показатель того, что время словно остановилось.

Самоуглубляясь в себя, человек способен широко раздвинуть пределы индивидуального “я”. И тогда перед ним распахиваются безграничные пространственные и временные дали, мир, готовый к коэволюционному развитию и коммуникационному диалогу.

Биологи́ческие ри́тмы (биоритмы) (от греческого βίος - bios , «жизнь» и ῥυθμός - rhythmos , «любое повторяющееся движение, ритм» ) - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях её организации - от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открытие и закрытие раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)

Наука, изучающая роль фактора времени в осуществлении биологических явлений и в поведении живых систем, временнýю организацию биологических систем, природу, условия возникновения и значение биоритмов для организмов называется - биоритмология . Биоритмология является одним из направлений, сформировавшегося в 1960-е гг. раздела биологии - хронобиологии . На стыке биоритмологии и клинической медицины находится так называемая хрономедицина , изучающая взаимосвязи биоритмов с течением различных заболеваний, разрабатывающая схемы лечения и профилактики болезней с учетом биоритмов и исследующая другие медицинские аспекты биоритмов и их нарушений.

Биоритмы подразделяются на физиологические и экологические . Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды.

Биологические ритмы описаны на всех уровнях, начиная от простейших биологических реакций в клетке и заканчивая сложными поведенческими реакциями. Таким образом, живой организм является совокупностью многочисленных ритмов с разными характеристиками. По последним научным данным, в организме человека выявлено около 400 [ ] суточных ритмов.

Адаптация организмов к окружающей среде в процессе эволюционного развития шла в направлении как совершенствования их структурной организации, так и согласования во времени и пространстве деятельности различных функциональных систем. Исключительная стабильность периодичности изменения освещенности, температуры, влажности, геомагнитного поля и других параметров окружающей среды, обусловленных движением Земли и Луны вокруг Солнца, позволила живым системам в процессе эволюции выработать стабильные и устойчивые к внешним воздействиям временны́е программы, проявлением которых служат биоритмы. Такие ритмы, обозначаемые иногда как экологические , или адаптивные (например, суточные, приливные, лунные и годовые), закреплены в генетической структуре. В искусственных условиях, когда организм лишен информации о внешних природных изменениях (например, при непрерывном освещении или темноте, в помещении с поддерживаемыми на одном уровне влажностью, давлением и т. п.) периоды таких ритмов отклоняются от периодов соответствующих ритмов окружающей среды, проявляя тем самым свой собственный период.

Историческая справка

О существовании биологических ритмов людям известно с древних времен.

Теория «трёх ритмов»

Академические исследователи отвергли «теорию трёх биоритмов». Теоретическая критика излагается, например, в научно-популярной книге признанного специалиста в хронобиологии Артура Уинфри . К сожалению, авторы научных (не научно-популярных) трудов не сочли нужным специально уделить время критике, однако ряд публикаций (на русском языке это, например, сборник под редакцией Юргена Ашоффа , книга Л. Гласса и М. Мэки и другие источники) позволяют сделать вывод, что «теория трёх биоритмов» лишена научных оснований. Гораздо убедительнее, однако, экспериментальная критика «теории». Многочисленные экспериментальные проверки 1970-80-х годов полностью опровергли «теорию» как несостоятельную. В настоящее время «теория трёх ритмов» научным сообществом не признаётся и рассматривается как псевдонаука .

Благодаря широкому распространению «теории трёх ритмов», слова «биоритм» и «хронобиология » нередко ассоциируются с псевдонаукой. На самом деле хронобиология представляет собой научную доказательную дисциплину, лежащую в традиционном академическом русле исследований, а путаница возникает в связи с неверным использованием названия научной дисциплины по отношению к псевдонаучной теории.

См. также

Примечания

  1. βίος (неопр.) . A Greek-English Lexicon . Perseus.
  2. Henry George Liddell, Robert Scott. ῥυθμός (неопр.) . A Greek-English Lexicon . Perseus.

Марина Чернышева

Временнáя структура биосистем и биологическое время

Sankt-Petersburg State University

M. P.Chernysheva

TEMPORAL STRUCTURE of biosystems and biological TIME

Super Izdatelstvo

Введение

Природа Времени – одна из глобальных проблем, к решению которых наука неоднократно возвращалась на протяжении всей истории ее существования. Эволюция представлений о Времени от античности до XX-го века глубоко проанализирована в классическом труде Дж. Уитроу «Естественная философия времени» (1964), в монографиях М. И. Элькина (1985), П. П. Гайденко (2006) и других авторов. Начиная с ХХ века философские аспекты этой проблемы неизменно связаны с естественнонаучными подходами к ее решению (Шредингер, 2002; Чижевский, 1973; Уинфри, 1986; Козырев, 1963, 1985, 1991; Пригожин, 2002; и др.). В работах выдающихся отечественных исследователей находим идеи, давшие начало целым направлениям в науке о времени. Так, И. М. Сеченов положил начало исследованиям по влиянию двигательной активности на субъективное время человека. И.П. Павлов, впервые описавший рефлекс на время, фактически заявил о способности мозга к запоминанию временных интервалов. Н. П. Пэрна (1925), сотрудник кафедры физиологии Петроградского университета, впервые описал ритмы ряда физиологических процессов человека. Д. И. Менделеев, описавший движение цветка вслед за изменением положения солнца, определенно продемонстрировал наличие околосуточного (циркадианного) ритма движений растений, гормональный механизм которого был описан позже (В. Н. Полевой, 1982). В работах А. А. Ухтомского прослеживается мысль о важности временного фактора в работе нервной системы и в, частности, в формировании доминанты (Ухтомский, 1966; Соколова, 2000). Один из гениев русского Ренессанса начала ХХ века, В. И. Вернадский, не только ввел рубрикацию специфического для разных систем времени (геологического, исторического, биологического, социального), но и обосновал представление о биологическом времени как основном и первичном, придав ему «космический статус» по причине способности биосистем к движению и размножению (Вернадский, 1989). Эту же особенность живых организмов подчеркивал Э. Шредингер (2002).

Наряду с мультидисциплинарными подходами к решению проблемы природы Времени (Аксенов, 2000; Вакуленко и др., 2008; Казарян, 2009; Коганов, 2009; Козырев, 1989; Коротаев, Киктенко, 2012; Лебедев, 2004; Левич, 2000, 2002, 2013; Хасанов, 2011; Чураков, 2012; Шихобалов, 2008, и др.), огромный объем исследований, начиная со второй половины ХХ века, посвящен природе биологического времени (Aschoff, 1960; Уинфри, 1990; Питтендрих, 1984; Алпатов, 2000; Романов, 2000; Оловников, 1973, 2009; Скулачев, 1995; Загускин, 2004, 2007, и др.). Достижения физики, химии, математики и биологии предопределили разработку разнообразных новых методов исследования, позволивших открыть белки часовых генов (clock-genes proteins), формирующие механизм околосуточных ритмов для многих функций организма. Важность активности clock-белков и clock-осциллятора для здоровья и адаптации человека к пространственно-временному континууму окружающей среды обусловили соответствующую тематическую направленность большинства работ современных отечественных и зарубежных исследователей. В отечественной биологии и медицине «штурм» клеточно-молекулярных механизмов биологического времени привел к выдающимся открытиям: созданию теломерно-редусомной теории контроля продолжительности жизни (Оловников, 1973, 2009) и представления о роли митохондрий в процессах старения (Скулачев, 1995), а также к развитию геронтологических аспектов роли гормонов эпифиза и тимуса (Анисимов, 2010; Хавинсон и др., 2011; Кветной и др., 2011). В работах зарубежных исследователей выявлены функции отдельных clock-белков, условия формирования clock-осциллятора и ритмов с разными темпоральными параметрами (см. Golombek et al., 2014), а также развиты представления о системах синхронизации clock-осцилляторов разных структурных уровней организма. Растущее понимание специфики клеточных, тканевых, органных и системных генераторов временных процессов определяют начинающийся возврат зарубежных авторов к «системному мышлению» в аспекте проблемы Времени (Blum et al., 2012; Mohawk et al., 2012). Заметим, что у отечественных исследователей системный подход в изучении этой проблемы всегда оставался в поле внимания (Черниговский, 1985; Баранникова и др., 2003; Кулаев, 2006; Январева и др., 2005; Журавлев, Сафонова, 2012, и др.). Наряду с очевидными успехами в изучении чувствительных к «ходу времени» (термин Н.А. Козырева) биологических объектов, остаются мало разработанными вопросы о временной структуре живых организмов, взаимосвязи клеточно-молекулярных и системных таймеров, сенсорах Времени и пока открыт вопрос о природе Времени. По мнению автора, обширный круг исследований биосистем, выполненных к настоящему времени в мире, позволяет предложить определенные решения по перечисленным вопросам.

Биологическое время

«Понять “природу” времени, – значит указать его природный референт, т. е. процесс, явление, “носитель” в материальном мире, свойства которого могли бы быть отождествлены или корреспондированы со свойствами, приписываемыми феномену времени».

А.П. Левич, 2000.

1.1. Феномен жизни

Вынесенное в эпиграф высказывание Александра Петровича Левича представляется совершенно справедливым в свете представлений Г. Лейбница и Н.А. Козырева об энергетической природе времени и его «активных свойствах». Действительно, по аналогии с историей открытия электрона по иммерсионному следу в камере Вильсона, биологические процессы, обладающие рядом темпоральных параметров и потому являющиеся по сути временными процессами, вполне могут быть «референтами» времени и отражать его воздействие. Для понимания «природы» времени в биосистемах важен анализ факторов, определяющих специфику живых организмов по сравнению с косными системами

Феномен жизни и отличия живого организма от косных систем, во все времена привлекали внимание философов и представителей естественных наук (Аристотель, 1937; Страхов, 2008; Вернадский, 1989; Ухтомский, 1966; Шредингер, 2002, и многие другие). Очевидно, что общность базисных законов природы не исключает особенностей их проявления в условиях специфики биосистемы, косной природной или искусственной систем. К их числу, в первую очередь, следует отнести законы термодинамики, определяющие для любой системы возможность и длительность работы, а также время существования (продолжительность жизни). Признавая справедливость законов термодинамики для всех объектов Вселенной, многие исследователи отмечают специфику проявлений второго начала термодинамики для живых организмов (Шредингер, 2002; Пригожин, 2002, и др.). Среди таковых, прежде всего, отмечается невозможность «тепловой смерти» для живых организмов вследствие стремления биосистем к стабилизации уровня энтропии (Вернадский, 1989; Пригожин, 2002; Пригожин, Стенгерс, 2000, и др.).

В основе жизнедеятельности биосистем лежат разнообразные процессы, использующие химическую, механическую, электрическую, световую и другие виды энергии. Как известно, при реализации различных функций (работы) в любой системе происходит частичное преобразование той или иной энергии в тепловую, которая может быть утрачена через теплорассеивание в окружающую среду или частично задержана, определяя уровень хаоса (энтропии) в структурах организма. Для живых организмов справедливы и другие известные определения энтропии: как меры степени неструктурированности потоков энергии и меры термодинамической возможности определенного состояния или процесса. Множественность возможных определений энтропии для биосистемы подчеркивает и разнообразие путей ее регуляции.

Давно замечено, что все животные и растения обладают способностью ощущать время, или, как говорят ученые, имеют биологические часы . Ход этих часов тесно связан со сменой дня и ночи, сезонов года и другими внешними побудителями. Стрелки биологических часов сообщают растениям, когда им надлежит зацвести, животным — приступить к охоте, птицам — устраивать брачные «концерты» и отправляться в теплые края, а человеку — проснуться и не опоздать на работу.

Ученые полагают, что сама идея времени возникла тогда, когда наши предки учились думать: ведь ум действует последовательно — мы не можем сосредоточиться сразу же на двух событиях, все впечатления осознаются нами в некоей протяженности. С веками способность измерять время стала необходимым условием выживания организмов.

Человек рождается снабженным биологическими часами , и только по мере становления речи у него появляются вторые психологические часы, позволяющие различать прошлое, настоящее и будущее. Будущее — это то, к чему мы движемся, определенный промежуток между потребностью и моментом ее удовлетворения, образно говоря, расстояние между чашей и губами. Будущее не идет к нам, мы сами идем к нему, прошлое же остается позади.

Так время обрело характер движения. Когда мы не заняты делом, время ползет черепашьим шагом, но оно неудержимо мчится, когда мы поглощены любимым занятием. К слову сказать, первобытный человек на основе своих наивных представлений о времени пришел к выводу о неотвратимости смерти. Инстинкт подсказал ему способы борьбы с небытием, и он «перехитрил» время тем, что увековечил прошлое в ритуалах. Отмечая их, торжественно осуществляя обряды, человек убедился в необходимости измерять время. По меткому выражению Аристотеля, прошлое стало объектом памяти, будущее объектом надежд.

Много труда отдано было учеными поискам таинственных биологических часов. Кропотливые и сложные исследования подтвердили, что живые организмы мерят время периодическими процессами — от кратких, в доли секунды, реакций в клетке, до суточных и месячных циклов на уровне организма, который буквально «пронизан» ритмическими процессами.

Как же все-таки мы отмечаем время? В какой-то мере приблизился к ответу наш соотечественник известный ученый-физиолог И. П. Павлов: головной мозг за день получает раздражение, утомляется, затем восстанавливается. Пищеварительный канал периодически то занят пищей, то освобождается от нее. И так как каждое состояние может отражаться на больших полушариях, то вот и основание, чтобы отличить один момент от другого. Действительно, чудо природы — мозг человека — способен отражать события, длящиеся от тысячной доли секунды до десятков лет. И только поражение определенных его областей стирает следы прошлого, дезориентирует в событиях настоящего и лишает нас возможности планировать будущее.

Как же работают наши внутренние часы , хотя бы на протяжении суток? Вот их ход:

1 час ночи . Мы спим уже около трех часов, пройдя через все фазы сна. Около часа ночи наступает легкая фаза сна, мы можем пробудиться. В это время мы особенно чувствительны к боли.

2 часа ночи . Большинство наших органов работают в экономичном режиме. Трудится только печень. Она использует эти спокойные минуты, чтобы интенсивнее переработать необходимые нам вещества. И прежде всего те, которые удаляют из организма все яды. Организм подвергается своего рода «большой стирке». Если вы не спите в это время, не следует пить кофе, чай и особенно спиртное. Лучше всего выпить стакан воды или молока.

3 часа ночи . Тело отдыхает, физически мы полностью истощены. Если вам приходится бодрствовать, постарайтесь не рассеиваться, а сосредоточьтесь полностью над работой, которую необходимо закончить. В это время у нас самое низкое давление, редкий пульс и медленное дыхание.

4 часа ночи . По-прежнему сохраняется низкое давление. Мозг снабжается минимальным количеством крови. В этот час чаще всего умирают люди. Организм работает на малых оборотах, но слух обостряется. Мы пробуждаемся от малейшего шума.

5 часов утра . Мы сменили уже несколько фаз сна: фазу легкого сна и сновидения и фазу глубокого сна без сновидений. Встающий в это время быстро приходит в бодрое состояние.

6 часов утра . Начинает повышаться давление, учащается пульс. Даже если мы хотим спать, наш организм уже пробудился.

7 часов утра . В это время резко возрастает иммунологическая защита организма. Шанс заражения при контакте с вирусами минимальный.

8 часов утра . Мы отдохнули. Печень полностью освободила наш организм от ядовитых веществ. В этот час нельзя принимать алкоголь — на печень обрушится большая нагрузка.

9 часов утра . Повышается психическая активность, уменьшается чувствительность к боли. Сердце работает на полную мощность.

10 часов дня . Наша активность повышается. Мы в лучшей форме. Появилось желание своротить горы. Такой энтузиазм сохранится до обеда. Любая работа по плечу. Не растрачивайте зря это время на пустые разговоры с друзьями за чашкой кофе. Не распыляйте свою работоспособность, потом уже она в таком виде не проявится.

11 часов . Сердце продолжает работать ритмично в гармонии с психической активностью. Большие нагрузки почти не ощущаются.

12 часов . Наступает первый спад активности. Падает физическая и умственная работоспособность. Чувствуется усталость, нужен отдых. В эти часы печень «отдыхает», в кровь поступает немного гликогена.

13 часов . Кривая энергии опускается. Это, пожалуй, самая низкая точка в 24-часовом цикле. Реакции замедляются. Наступает время обеденного перерыва.

14 часов . Усталость проходит. Наступает улучшение. Работоспособность повышается.

15 часов . Обостряются органы чувств, особенно обоняние и вкус. Гурманы в это время предпочитают садиться за стол. Мы входим в рабочую норму.

16 часов . Уровень сахара в крови повышается. Некоторые врачи это состояние называют послеобеденным диабетом. Однако, такое отклонение от нормы не свидетельствует о заболевании.

17 часов . Сохраняется высокая работоспособность. Активно, с удвоенной энергией тренируются спортсмены. Время занятий на свежем воздухе.

18 часов . У людей понижается чувствительность к боли. Усиливается желание больше двигаться. Психическая бодрость постепенно снижается.

Сохранность хода биологических часов — важный элемент долгожительства. Ритмичность — вот что продлевает жизнь. Еще 200 лет назад немецкий врач Хуфелянд, даже не подозревавший о хронобиологии, писал, что главным является не время, когда человек ложится спать, а регулярность, то есть надо постоянно ложиться в один и тот же час. Для современного же человека главное не длительность сна, а его качество — сон должен быть глубоким и спокойным.

Биологические ритмы , как показывают исследования, оказывают существенное влияние на процесс творчества. Так, анализируя музыкальный ритм произведений классиков, ученые пришли к выводу, что музыкальные темы менялись с частотой: у Чайковского — в три секунды, у Бетховена — в пять, у Моцарта — в семь. Если проанализировать взаимосвязь между музыкальным ритмом и памятью на музыку и биологическими ритмами организма, то окажется, что нам нравится и мы легко запоминаем те музыкальные мелодии, ритм которых в наибольшей степени соответствует нашему биологическому ритму. Следовательно, биоритмы являются как бы внутренними камертонами воспринимаемой музыки, и если они совпадают, то человек с удовольствием слушает ее.

В настоящее время на некоторых производствах, особенно при монотонной работе, широко используется музыка. Психологи считают, что это способствует производительности труда и снимает усталость. Музыка дает хороший эффект и при лечении бессонницы и нервно-психических болезней. Знание и учет биологических ритмов важны при организации профилактических и лечебных мероприятий.