Хрящ его физическая плотность. Строение и функции хрящевой ткани человека

Классификация хрящевых тканей основана на особенностях строения его межклеточного вещества - матрикса. Такая классификация видов хрящевой ткани далеко не совершенна, поскольку не содержит в себе общего единого принципа. Так, термин «фиброзный» указывает на содержание волокнистых структур, а термин «эластический» - уже на определенную конкретную характеристику белка - эластина, входящего в состав хряща. Термин «гиалиновый» информирует лишь о том, что матрикс хряща внешне однородный, а о структуре и характере белков, составляющих его структуру, вообще не упоминается.
).

Хрящевая ткань присутствует во внескелетных образованиях - гортани, носовых перегородках, бронхах, стромальных компонентах сердца.

Внеклеточный матрикс хрящевой ткани отличается от матрикса других разновидностей соединительной ткани существенными особенностями своих структурных макромолекулярных компонентов. Эти особенности обусловливают выраженное своеобразие архитектоники матрикса и его уникальные функциональные (биомеханические) характеристики.

Волокнистые структуры матрикса образованы особыми, специфическими для хрящевой ткани коллагеновыми белками - «большим» фибриллярным коллагеном II типа и сопутствующими ему «малыми» (минорными) коллагенами IX, XI, а также X и некоторых других типов. Главным компонентом межуточного вещества матрикса является также специфический для хрящевой ткани «большой» протеогликан агрекан, макромолекулы которого образуют огромные (их размеры превышают размеры клеток), занимающие большое пространство агрегаты. В состав макромолекул агрекана, составляя значительную часть их массы, входят сульфатированные гликозаминогликаны - хондроитинсульфаты и кератансульфат.

Клетки хрящевой ткани

Дифферон хрящевой ткани может быть представлен следующим образом: прехондробласты-хондробласты-хондроциты. Опираясь на описание дифферона клеток хрящевых тканей, а также из дидактических соображений, мы опишем три формы хондроцитов: прехондробласты, хондробласты и хондроциты.

Прехондробласты

В диффероне хрящевых клеток выделяют клетки-предшественники хондробластов - прехондробласты. Выделение прехондробластов в определенной мере является условным, так как предполагают, что у хряща и кости имеются единые полустволовые клетки - общие для хондробластов и остеобластов.

Хондробласты

Основные процессы формирования хрящевой ткани происходят в эмбриогенезе, где хондроцит функционирует в качестве своей бластной формы и называется хондробластом. По-видимому, целесообразно говорить о единой популяции клеток хондробласт-хондроцит, которая обеспечивает как формирование хрящевой ткани, так и функционирование ее в зрелом состоянии. Источником пополнения популяции таких клеток являются прехондробласты.

Хондробласт можно определить как клетку, находящуюся в стадии перехода от прехондробласта к зрелому хондроциту. Такая клетка обладает секреторными потенциями, необходимыми для синтеза компонентов матрикса, но сохраняет еще способность к пролиферации. Многие исследователи отмечают, что хондробласт и хондроцит не имеют отчетливых морфологических различий, т.е. в морфологической характеристике хондробластов и хондроцитов еще не удалось определить ту меру специфичности, которая позволила бы уверенно различать эти два типа клеток.

Роль хондробластов-хондроцитов как, возможно, единственной клетки в жизнедеятельности хряща настолько важна, что их назвали «архитекторами хряща». Это название отражает тот факт, что она является единственным продуцентом всех макромолекулярных компонентов матрикса хрящевой ткани. Формирование хряща происходит преимущественно в эмбриогенезе и заканчивается в очень молодом возрасте. Таким образом, этот процесс почти целиком происходит на хондробластической стадии дифференцировки клетки.

Хондроциты

Хондроциты - это высокоспециализированная и метаболически активная клетка. Синтетическая деятельность хондроцита специфична и дифференцирована в направлении продукции и секреции коллагена II типа, минорных коллагенов, агрекана, характерных для хрящевой ткани гликопротеинов, эластина (в эластических хрящах). Ультраструктура зрелого хондроцита соответствует высокому уровню его метаболической активности.

Тот факт, что хондроциты служат источником коллагена хрящевой ткани, документируется и биохимическими, и морфологическими методами. Хондроциты в монослойной клеточной культуре дают внутриклеточную иммунофлюоресценцию с сывороткой, меченной к коллагену II типа. Таким же методом удалось локализовать коллаген II типа внутри клеток хрящевой метафизарной пластинки у детей на биопсийном материале.

Не менее убедительны и данные, относящиеся к синтезу протеогликанов. В хондроцитах при ТЭМ выявляются окрашиваемые рутениевым красным гранулы, которые заполняют весь внеклеточный матрикс хрящевой ткани и представляют собой не что иное, как уплотненные в процессе фиксации агрегаты протеогликанов. Эти гранулы обнаруживаются в везикулах комплекса Гольджи, но они отсутствуют в ГЭС. Это означает, что агрекан приобретает свой полианионный характер (рутениевый красный окрашивает полианионные макромолекулы избирательно) при прохождении через комплекс Гольджи. Эти данные согласуются с результатами радиоавтографических исследований, в которых показано, что S35 избирательно концентрируется в комплексе Гольджи. Таким образом, был не только установлен факт биосинтеза хондроцитами агрекана, но и выявлена точная внутриклеточная локализация центрального звена процесса его биосинтеза.

Сопоставление габаритов хондроцита и агреканового агрегата (первый значительно меньше по занимаемому объему, чем второй) позволило заключить, что внутри хондроцита происходит только синтез мономерных макромолекул агрекана, которые секретируются за пределы клетки в матрикс, где и происходит сборка агрекановых агрегатов.

Синтез хондроцитами тканевых структурных гликопротеинов хрящевой ткани доказан биохимическими методами. Получить морфологические подтверждения этого синтеза трудно. Полагают, что он маскируется выраженными процессами синтеза коллагена и протеогликанов. Способность хондроцитов к синтезу белка эластина была показана при исследовании культивируемых хондроцитов ушной раковины кролика.

Согласно современным представлениям, процесс обызвествления хряща происходит при активном участии в нем хондроцитов. Минерализации предшествуют изменения - как в матриксе, так и в клетках хряща.

Гетерогенность хондроцитов

Хондроциты нормальной хрящевой ткани фенотипически представляют собой гетерогенную популяцию клеток.

В гиалиновом хряще выявляются разные по своим морфологическим и функциональным характеристикам хондроциты. Основными являются три их разновидности.

Хондроциты I типа - относительно немногочисленные клетки с неровными отростчатыми краями, крупным ядром, относительно слабо выраженным ГЭС. Клеткам этого типа, например, в суставном хряще, приписывается возможность митотического деления, т.е. функции, необходимой для осуществление физиологической регенерации в процессе естественной смены популяции хондроцитов.

Хондроциты II типа составляют основную массу клеток и характерны для любой разновидности гиалинового хряща. Такой хондроцит - клетка (15- 20 мкм в диаметре) с крупным ядром и многими мелкими отростками, так называемыми цитоплазматическими «ножками». Ядерный хроматин частично конденсирован и сосредоточен в основном на внутренней поверхности ядерной мембраны. В цитоплазме хорошо развита ГЭС, ее каналы местами расширены и наполнены продуктами синтеза. Комплекс Гольджи всегда хорошо развит. Митохондрии немногочисленны.

Хондроциты III типа - это также высокодифференцированные клетки.

Фенотип хондроцита и закономерности его поддержания

Вопрос о том, каковы возможности и необходимые условия для поддержания фенотипа хондроцита в зрелом хряще в норме и при экстремальных ситуациях, являлся в последние годы предметом как изучения, так и дискуссий. Хондроцит и окружающий его матрикс представляют собой единое в функциональном отношении целое - хондроцит продуцирует матрикс, матрикс обеспечивает поддержание фенотипа хондроцита. Соответственно в нормальном хряще in vivo имеются условия, обеспечивающие поддержание стабильности фенотипа хондроцита.

Полагают, что фенотип хондроцита более лабилен, чем фенотип других клеток соединительной ткани. Он приобретается на определенном этапе хондрогенной дифференцировки мезенхимальных клеток и утрачивается в условиях патологии, что, несомненно, имеет патогенетическое значение. Утрата фенотипа хондроцитов происходит также после изолирования их из хрящевой ткани для последующего культивирования в условиях монослойной клеточной культуры. В этом случае на фоне выраженной пролиферации хондроцитов наблюдается угнетение биосинтеза хрящевого матрикса. Этот феномен обычно называют процессом дедифференциации.

Однако при определенных условиях фенотип хондроцитов (например, после перенесения клеток из монослойной в суспензионную культуру) может быстро восстанавливаться. Происходит редифференциация, при которой активируется ряд генов, участвующих в процессе дифференцировки клеток, в том числе гены, кодирующие компоненты системы передачи сигналов одного из цитокинов - IL-6. Напротив, экспрессия некоторых других генов угнетается. В частности, угнетение затрагивает ген фактора роста соединительной ткани (CTGF). Главным признаком редифференциации является возобновление экспрессии специфических компонентов экстрацеллюлярного матрикса, хотя при этом могут частично сохраняться как появившаяся при дедифференциации экспрессия неспецифических продуктов биосинтеза, в частности, коллагена I типа, так и измененная структура хондроцита.

Для поддержания фенотипа зрелого хондроцита необходимо присутствие нормального полноценного хрящевого матрикса. В норме именно структурные особенности матрикса стабилизируют фенотип клеток. Это заключение подтверждается тем фактом, что при культивировании срезов хряща, т.е. при сохранении матрикса, фенотип хондроцитов не изменяется на протяжении длительного времени культивирования (до 9 недель). В условиях патологии фенотип хондроцита изменяется, а задачей терапии является его восстановление.

Метаболические процессы в клетках хрящевой ткани

Хондроциты, как было указано выше, - это единственная разновидность клеток, представленная в зрелой хрящевой ткани, и именно поэтому только они могут служить источником для формирования внеклеточного матрикса. Продукция матрикса и поддержание его структурной целостности на протяжении жизни организма - основные функции хондроцитов. Именно хондроциты осуществляют биосинтез всех специфических компонентов матрикса. Кроме того, хондроциты контролируют протекающие в матриксе процессы сборки надмолекулярных структур (например, агрегатов агрекана и коллагеновых фибрилл) и течение катаболических реакций.

Как мы уже подчеркивали, численность хондроцитов относительно невелика. Они могут обеспечить формирование матрикса только за счет высокой метаболической (анаболической и катаболической) активности каждой клетки. Эта активность, наиболее выраженная в эмбриональном и раннем постнатальном онтогенезе, является одним из характерных свойств хондроцитов.

Метаболическая активность хондроцитов, за исключением общих для всех клеток процессов, обеспечивающих их собственную жизнедеятельность, направлена на построение и поддержание матрикса. Ее целесообразно рассмотреть после того, как будет представлена характеристика структурных компонентов матрикса и действующих в нем ферментов. Здесь мы лишь обратим внимание на те условия, в которых осуществляются метаболические функции хрящевых клеток.

Относительно немногочисленные клетки хрящевой ткани (хондробласты-хондроциты) должны обеспечить образование и последующее поддержание в состоянии динамического равновесия больших масс экстрацеллюлярного матрикса. Свою задачу клетки хряща выполняют в особых условиях: они функционируют в ткани, бедной кровеносными сосудами, а в суставных хрящах взрослых организмов - в бессосудистой ткани. Если хрящи других локализаций, например межреберные, получают необходимые для метаболизма материалы из капилляров надхрящницы (перихондрия), то в суставном хряще, лишенном перихондрия и отделенным пограничной линией от субхондральной кости, возможности получения этих материалов из крови отсутствуют.

Это означает, что в зрелом суставном хряще хондроциты, удаленные от кровеносных сосудов, получают исходные материалы для метаболических процессов только из омывающей суставную поверхность СЖ за счет их проникновения сквозь толщу матрикса. Физическим механизмом, осуществляющим такое проникновение, является диффузия - перемещение находящихся в растворе молекул из области с более высокой концентрацией в область более низкой концентрации до достижения равномерного распределения молекул растворенного вещества среди молекул растворителя.

Скорость диффузии между полярными и неполярными молекулами отчетливо различается. Но интенсивность диффузии всех низкомолекулярных веществ вполне достаточна для того, чтобы обеспечить метаболические потребности хондроцитов по всей толщине суставного хряща, даже в наиболее массивных участках хрящей тазобедренного сустава человека, где толщина хряща достигает 3,5-5 мм. Исключение составляет кислород; его концентрация в СЖ очень низкая. При реально существующей в синовии концентрации кислорода (3-10 х Ю-8 моль/мл) диффузия обеспечивает проникновение кислорода только до глубины около 1,8 мм. Клетки, расположенные в более удаленных от суставной поверхности слоях хряща, оказываются в условиях дефицита кислорода. Вследствие этого метаболические процессы в хондроцитах различных слоев хряща протекают с неодинаковой активностью. Это - еще одно проявление метаболической неоднородности суставных хрящей.

Метаболизм хондроцитов носит преимущественно анаэробный характер, ибо он осуществляется за счет гликолиза. Такая особенность энергетического обеспечения ткани хряща - приспособительный механизм, позволяющий клеткам функционировать в условиях очень низких концентраций кислорода. Если в межклеточных пространствах мягких тканей парциальное давление кислорода составляет 15-20 мм рт. ст., то в суставном хряще оно не превышает 5-8 мм рт. ст. При этом в базальной зоне хряща оно примерно в 10 раз ниже, чем в поверхностных. Чем ниже концентрация кислорода в матриксе хряща, тем выше интенсивность гликолиза и соответственно - продукция молочной кислоты.

Хондроциты фенотипически адаптированы к анаэробным условиям функционирования. Эксперименты in vitro показали, что по мере повышения степени гипоксии анаболические процессы не только не угнетаются, но даже активируются. Повышается эффективность утилизации глюкозы, что обеспечивает более экономное расходование энергии. Однако при слишком выраженной тканевой гипоксии (такое состояние наблюдается при РА, когда очень резко падает содержание кислорода в СЖ) происходит угнетение экспрессии хондроцитами ряда генов. Уровни мРНК, кодирующих структурные макромолекулы матрикса (коллаген II типа), количество некоторых цитокинов и интегринов в хондроцитах при этом снижается.

В то же время в отличие от клеток других тканей хондроциты дают парадоксальную реакцию на увеличение парциального давления кислорода: угнетением биосинтетических процессов, в частности снижением биосинтеза ДНК и протеогликанов. С возрастом потребление кислорода хондроцитами еще более снижается. Потребление кислорода хондроцитами, особенно поверхностного слоя хряща, понижается при избыточной концентрации глюкозы в СЖ.

Биомеханические свойства хряща

Суставные хрящи выполняют две основные биомеханические функции:

  1. принимают на себя действие сил сжатия (компрессии), обусловленных тяжестью и развивающимися при движениях нагрузками, способствуя их равномерному распределению и переводу аксиально направленных сил в тангенциальные;
  2. образуют устойчивые к износу поверхности сочленяющихся элементов скелета.

Поскольку хрящевая ткань содержит очень мало клеток - около 1 % массы ткани, эти свойства практически полностью зависят от внеклеточного матрикса.

С точки зрения биомеханики матрикс хрящевой ткани представляет собой материал, состоящий из двух различных фаз - твердой и жидкой. Твердая фаза включает в себя неволокнистые структурные макромолекулы, в числе которых преобладают агрегаты агрекана и волокнистые структурные макромолекулы, среди которых преобладает коллаген II типа. Жидкая фаза составляет примерно 80 % массы ткани.

Коллагеновые волокна образуют прочную сеть, которая фиксирует агрегаты агрекана и, ограничивая в пространстве отрицательно заряженные макромолекулы агрекана, не позволяет им распространиться в максимальном объеме. Эта сеть (каркас) мало растяжима и обеспечивает прочность хряща на разрыв.

Композитная твердая фаза матрикса функционирует как пористый, проницаемый, скрепленный волокнами материал, набухший водой. Молекулы воды располагаются внутри пространств, занимаемых диффузными агрегатами агрекана, и именно вода, как несжимаемая жидкость, обеспечивает прочность хряща на сжатие. Протеогликановый компонент матрикса, в силу своих полианионных свойств, ответствен за гипергидратированное состояние хряща и, следовательно, играет определяющую роль в формировании прочности к сдавливающим нагрузкам. Существует выраженная положительная корреляция между концентрацией в хряще агрекана и его прочностью на сжатие.

Только менее 1 % молекул воды прочно удерживается коллагеновыми волокнами. Остальные (более 99%) молекулы воды, располагающиеся в межволокнистой субстанции матрикса, достаточно свободны и подвижны. При компрессионных нагрузках эти свободные молекулы вместе с растворенными в воде низкомолекулярными веществами могут перемещаться по матриксу и «выжиматься» из хряща в СЖ. При уменьшении давления происходит движение в обратном направлении - из СЖ в матрикс. Этим объясняется способность хряща к обратимой деформации (упругость).

При движении воды в пористом материале, каким является матрикс, возникает трение, которое в сочетании с некоторыми особенностями твердой фазы (в основном речь идет о сложной системе межмолекулярных связей компонентов матрикса) обусловливает определенную вязкость хрящевой ткани.

Таким образом, двухфазная модель в целом объясняет вязкоупругие биомеханические свойства хряща. Вместе с тем она встречает и возражения. Главное из них - неправомерность объединения всех твердых компонентов в одну фазу. Эксперименты N.D. Broom, Н. Silyn-Roberts показали, что разрушение значительной части агрекановых агрегатов (с помощью гиалуронидазы) практически не отражается на прочности хряща на разрыв и, следовательно, коллагеновые волокна в этой биомеханической функции независимы от агрекана. Вероятно, укрепление коллагеновых волокон за счет взаимодействия коллагенов различных типов более существенно, чем связи между коллагенами и агреканом, поэтому появляются основания рассматривать агрекан и коллагены как две отдельные фазы, что означает переход к трехфазной биомеханической модели хряща (коллагены-агрекан-вода).

Вполне возможно, что на биомеханических свойствах хряща сказывается влияние гликопротеинов. Это означает, что и трехфазная модель недостаточно учитывает всю многокомпонентность хрящевого матрикса. Но независимо от того, какая биомеханическая модель окажется окончательной, очевидно, что нормальное функционирование хряща возможно только при оптимальных количественных и структурных взаимоотношений всех компонентов матрикса.

Хрящевая ткань - это разновидность соединительной ткани, состоящая из хрящевых клеток (хондроцитов) и большого количества плотного межклеточного вещества. Выполняет функцию опоры. Хондроциты имеют разнообразную форму и лежат одиночно или группами внутри хрящевых полостей. Межклеточное вещество содержит хондриновые волокна, близкие по составу к коллагеновым волокнам, и основное вещество, богатое хондромукоидом.

В зависимости от строения волокнистого компонента межклеточного вещества выделяют три вида хряща: гиалиновый (стекловидный), эластический (сетчатый) и волокнистый (соединительнотканный).

Патология хрящевой ткани - см. Хондрит, Хондродистрофия.

Хрящевая ткань (tela cartilaginea)- разновидность соединительной ткани, характеризующаяся наличием плотного межклеточного вещества. В последнем различают основное аморфное вещество, которое содержит соединения хондроитинсерной кислоты с протеинами (хондромукоиды) и волокна хондрина, близкие по составу коллагеновым волокнам. Фибриллы хрящевой ткани относятся к типу первичных волокон и имеют толщину 100-150 Å. При электронной микроскопии в волокнах хрящевой ткани, в отличие от собственно коллагеновых волокон, обнаруживается лишь неясное чередование светлых и темных участков без четкой периодичности. Хрящевые клетки (хондроциты) располагаются в полостях основного вещества поодиночке или небольшими группами (изогенные группы).

Свободную поверхность хряща покрывает плотная волокнистая соединительная ткань - надхрящница (perichondrium), во внутреннем слое которой расположены малодифференцированные клетки - хондробласты. Покрывающая суставные поверхности костей хрящевая ткань надхрящницы не имеет. Рост хрящевой ткани осуществляется за счет размножения хондробластов, вырабатывающих основное вещество и в дальнейшем превращающихся в хондроциты (аппозиционный рост) и за счет развития нового основного вещества вокруг хондроцитов (интерстициальный, интуссусцепционный рост). При регенерации может также произойти развитие хрящевой ткани путем гомогенизации основного вещества волокнистой соединительной ткани и превращения ее фибробластов в хрящевые клетки.

Питание хрящевой ткани идет путем диффузии веществ из кровеносных сосудов надхрящницы. В ткань суставных хрящей питательные вещества проникают из синовиальной жидкости или из сосудов прилегающей кости. Нервные волокна также локализуются в надхрящнице, откуда отдельные ответвления безмякотных нервных волокон могут проникать внутрь хрящевой ткани.

В эмбриогенезе хрящевая ткань развивается из мезенхимы (см.), между сблизившимися элементами которой появляются прослойки основного вещества (рис. 1). В таком скелетогенном зачатке вначале формируется гиалиновый хрящ, временно представляющий все главные части скелета человека. В дальнейшем этот хрящ может замещаться костной тканью или дифференцироваться в другие виды хрящевой ткани.

Известны следующие виды хрящевой ткани.

Гиалиновый хрящ (рис. 2), из которого у человека образованы хрящи дыхательных путей, грудных концов ребер и суставных поверхностей костей. В световом микроскопе основное вещество его представляется гомогенным. Хрящевые клетки или изогенные группы их окружены оксифильной капсулой. В дифференцированных участках хряща различают прилегающую к капсуле базофильную зону и расположенную кнаружи от нее оксифильную зону; в совокупности эти зоны образуют клеточную территорию, или хондриновый шар. Комплекс хондроцитов с хондриновым шаром обычно принимают за функциональную единицу хрящевой ткани - хондрон. Основное вещество между хондронами называют интертерриториальными пространствами (рис. 3).

Эластический хрящ (синоним: сетчатый, упругий) отличается от гиалинового наличием в основном веществе ветвящихся сетей эластических волокон (рис. 4). Из него построены хрящ ушной раковины, надгортанника, врисберговы и санториновы хрящи гортани.

Волокнистый хрящ (синоним соединительнотканный) расположен в местах перехода плотной волокнистой соединительной ткани в гиалиновый хрящ и отличается от последнего наличием в основном веществе настоящих коллагеновых волокон (рис. 5).

Патология хрящевой ткани - см. Хондрит, Хондродистрофия, Хондрома.

Рис. 1-5. Строение хрящевой ткани.
Рис. 1. Гистогенез хряща:
1 - мезенхимный синцитий;
2 - молодые хрящевые клетки;
3 - прослойки основного вещества.
Рис. 2. Гиалиновый хрящ (малое увеличение):
1 - надхрящница;
2 - хрящевые клетки;
3 - основное вещество.
Рис. 3. Гиалиновый хрящ (большое увеличение):
1 - изогенная группа клеток;
2 - хрящевая капсула;
3 - базофильная зона хондринового шара;
4 - оксифильная зона хондринового шара;
5 - интертерриториальное пространство.
Рис. 4. Эластический хрящ:
1 - эластические волокна.
Рис. 5. Волокнистый хрящ.

Костный мозг, заполняющий костномозговые полости, содержит в основном жиры (до 98 % в сухом остатке желтого мозга) и в меньшем количестве холинфосфатиды, холестерин, белки и минеральные вещества. В составе жиров преобладают пальмитиновая, олеиновая, стеариновая кислоты.
В соответствии с особенностями химического состава кость используют для производства полуфабрикатов, студней, зельцев, костного жира, желатина, клея, костной муки.
Хрящевая ткань. Хрящевая ткань выполняет опорную и механическую функции. Она состоит из плотного основного вещества, в котором располагаются клетки округлой формы, коллагеновые и эластиновые волокна (рис. 5.14). В зависимости от состава межклеточного вещества различают гиалиновые, волокнистые й эластичные хрящи. Гиалиновый хрящ покрывает суставные поверхности костей, из него построены реберные хрящи и трахея. В межклеточном веществе такого хряща с возрастом откладываются соли кальция. Гиалиновый хрящ полупрозрачен, имеет голубоватый оттенок.

Из волокнистого хряща состоят связки между позвонками, а также сухожилия и связки в месте их прикрепления к костям. Волокнистый хрящ содержит много коллагеновых волокон и незначительное количество аморфного вещества. Он имеет вид полупрозрачной массы.
Эластический хрящ кремового цвета, в межклеточном веществе которого преобладают эластиновые волокна. В эластическом хряще никогда не откладывается известь.

Хрящевые ткани

Он входит в состав ушной раковины, гортани.
Средний химический состав хрящевой ткани включает: 40-70 % воды, 19-20 % белков, 3,5 % жиров, 2-10 % минеральных веществ, около 1 % гликогена.
Для хрящевой ткани характерно высокое содержание мукопротеида - хондромукоида и мукогюлисахарида - хондроитинсерной кислоты в основном межклеточном веществе. Важным свойством этой кислоты является её способность образовывать солеобразные соединения с различными белками: коллагеном, альбумином и др. Этим, видимо, объясняется «цементирующая» роль мукополисахаридов в хрящевой ткани.
Хрящевая ткань используется на пищевые цели, а также из нее вырабатываются желатин и клей. Однако качество желатина и клея часто бывает недостаточно высоким, так как мукополисахариды и глюкопротеиды переходят в раствор из ткани вместе с желатином, снижая вязкость и прочность студня.

Хрящевые ткани – представляют собой вид опорных тканей, характеризующихся прочностью и эластичностью матрикса. Это связано с их положением в организме: в области суставов, в межпозвоночных дисках, в стенке дыхательных путей (гортань, трахея, бронхи).

Хрящевые

○ Гиалиновая

○ Эластическая

○ Волокнистая

Однако общий план их строения сходен.

1. Присутствие клеток (хондроцитов и хондробластов).

2. Формирование изогенных групп клеток.

3. Наличие большого количества межклеточного вещества (аморфное, волокна), что обеспечивает прочность и эластичность – то есть способность к обратимой деформации.

4. Отсутствие кровеносных сосудов – питательные вещества диффундируют из надхрящницы, благодаря высокому содержанию воды (до 70–80%) в матриксе.

5. Характеризуются сравнительно низким уровнем метаболизма.

Хрящевые ткани

Обладают способностью к непрерывному росту.

В процессе развития хрящевой ткани из мезенхимы образуется дифферон хрящевых клеток. К нему относятся:

1. Стволовые клетки – характеризуются округлой формой, высоким значением ядерно–цитоплазматических отношений, диффузным расположением хроматина и небольшим ядрышком. Органеллы цитоплазмы развиты слабо.

2. Полустволовые клетки (прехондробласты) – в них увеличивается количество свободных рибсом, появляется грЭПС, клетки становятся удлиненной формы, уменьшается ядерно цитоплазматическое отношение. Как и стволовые клеки они проявляют невысокую

пролиферативную активность.

3. Хондробласты – молодые клетки, расположенные на периферии хряща. Представляют собой небольшие уплощенные клетки, способные к пролиферации и синтезу компонентов межклеточого вещества. В базофильной цитоплазме хорошо развита грЭПС и

агрЭПС, аппарат Гольджи. В процессе развития превращаются в хондроциты.

4. Хондроциты – основной (дефинитивный) вид клеток хрящевых тканей. Бывают овальной, округлой или полигональной формы. Расположены в особых полостях

– лакунах – межклеточного вещества, поодиночке или группами. Эти группы называются изогенными группами клеток.

Изогенные группы клеток – (от греческого isos – равный, genesis – развитие) – группы клеток (хондроцитов), образующиеся путем деления одной клетки. Они лежат в общей полости (лакуне) и окружены капсулой, образованной межклеточным веществом хрящевой ткани.

Основное аморфное вещество (хрящевой матрикс) содержит:

1. Вода – 70–80%

2. Неорганические соединения – 4–7%.

3. Органические вещества – 10–15%

– Гликозамингликаны:

Ø хондроитинсульфаты (хондроитин-6-сульфат, хондроитин-4-сульфат,

Ø гиалуроновая кислота;

– Протеогликаны.

– Хондронектин – этот гликопротеин соединяет клетки между собой и с различными субстратами (связь клетки с коллагеном I типа).

В межклеточном веществе много волокон:

1. Коллагеновые (I, II, VI типов)

2. А в эластическом хряще – эластические.

Способы роста хряща.

Интерстициальный рост хряща представляет собой увеличение объёма хрящевой ткани (хряща) за счет увеличения количества делящихся хондроцитов и накопления компонентов межклеточного вещества, секретируемого этими клетками.

Аппозиционный рост хряща – представляет собой увеличение объёма хрящевой ткани (хряща) за счёт пополнения клеток, расположенных на периферии (клеток мезенхимы – в ходе эмбрионального хондрогенеза, хондробластов надхрящницы – в постэмбриональный период онтогенеза).

Дата публикования: 2015-02-03; Прочитано: 330 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Строение отдельных тканей человека, типы хрящей

Сухожилия и связки. Сила (тяга мышц или внешних сил) действует на сухожилия и связки в одном направлении. Поэтому фиброзные пластинки сухожилий, состоящие из фибробластов (фиброцитов), основного вещества и коллагеновых волокон, расположены параллельно друг другу. Пучки (от 10 до 1000) фиброзных пластинок отделяются друг от друга прослойками неоформленной соединительной ткани. Мелкие пучки соединяются в более крупные и т.д. Все сухожилие покрыто более мощным слоем неоформленной ткани, называемой надсухожилием. Оно несет сосуды и нервы к сухожилию, связке; там же находятся ростковые клетки.

Фасции, апоневрозы мышц, капсулы суставов и органов и др. Действующие на них силы направлены в разные стороны. Пучки фиброзных пластин расположены под углом друг к другу, поэтому фасции и капсулы трудно растянуть и разделить на отдельные слои.

Хрящевая ткань. Бывает постоянной (например, хрящи ребер, трахеи, межпозвоночных дисков, мениски в др.) и временной (например, в зонах роста костей – метафизах). Временные хрящи в последующем замещаются костной тканью. Хрящевая ткань не имеет соединительно-тканных прослоек, сосудов и нервов. Трофика ее обеспечивается только со стороны надхрящницы (слоя волокнистой соединительной ткани, покрывающей хрящ) или со стороны кости. Ростковый слой хряща находится в нижнем слое надхрящницы. При повреждении хрящ плохо восстанавливается.

Различают три типа хрящей:

1. Гиалиновый хрящ. Покрывает суставные поверхности костей, образует хрящевые концы ребер, кольца трахеи и бронхов. В эластичном основном веществе (хондромукоиде) хрящевых пластинок имеются отдельные коллагеновые волокна.

2. Эластический хрящ.

Строение и функции хрящевой ткани человека

Образует ушную раковину, крылья носа, надгортанник, хрящи гортани. В основном веществе хрящевых пластинок имеются преимущественно эластические волокна.

3. Волокнистый хрящ. Образует межпозвоночные и суставные диски, мениски, суставные губы. Хрящевые пластинки пронизаны большим количеством коллагеновых волокон.

Костная ткань образует отдельные кости – скелет. Составляет около 17% общего веса человека. Кости обладают прочностью при небольшой массе. Прочность и твердость кости обеспечивается коллагеновыми волокнами, особым основным веществом (оссеином), пропитанным минеральными веществами (главным образом, гидроксиапатитом-фосфорно-кислой известью) и упорядоченным расположением костных пластинок. Костные пластины образуют наружный слой любой кости и внутренний слой костно-мозговой Полости; средний слой трубчатой кости составлен из особых, так называемых остеонных систем – многорядных, концентрически расположенных пластинок вокруг канала, в котором находятся сосуды, нервы, рыхлая соединительная ткань. Промежутки между остеонами (трубками) заполнены вставочными костными пластинками. Остеоны располагаются по длиннику кости или в соответствии с нагрузкой. От канала остеона в стороны отходят очень тонкие канальца, соединяющие отделенные остеоциты.

Различают два типа кости – кортикальную (компактную или плотную), составляющую до 80% и трабекулярную (губчатую или пористую), составляющую до 20% всей костной массы. Если остеоны и вставочные пластинки лежат плотно, то образуется компактное вещество. Оно формирует диафизы трубчатых костей, верхний слой плоских костей и Покрывает губчатую часть кости. На концах костей, где необходим большой объем для суставного сочленения с сохранением легкости и прочности, формируется губчатое вещество. Оно состоит из перекладин, балок (трабекул), образующих костные ячейки (наподобие губки). Трабекулы составлены остеонами и вставочными костными пластинками, которые располагаются в соответствии с давлением на кость и с тягой мышц.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей (слоем соединительной ткани, сверху – плотной, а ближе к кости – рыхлой). В последней много сосудов, нервов, содержит костеобразные клетки – остеобласты, которые способствуют росту кости в ширину и заживлению переломов.

Скорость обновления кортикальной и трабекулярной кости взрослого человека от 2,5 до 16% в год.

В организме человека выделяют четыре основных типа ткани: эпителиальную, нервную, мышечную и соединительную. Соединительные ткани – это самая разнообразная группа тканей. Кровь и скелетная ткань, жир и хрящевая ткань – все это примеры соединительных тканей. Что между ними общего? Для всех них характерен высокий процент межклеточного вещества. Например, в крови межклеточное вещество представлено жидкой плазмой, в которой находятся клетки крови, костная ткань – это плотное межклеточное вещество – костный матрикс, в котором отдельные клетки выявляются только под микроскопом. Что такое межклеточное вещество, где оно находится, кто его создал? Ответ на вопрос «где находится» вытекает из названия – «межклеточное вещество», т.е. расположенное между клетками. Вещество состоит из молекул. А вот кто эти молекулы создал? Конечно, сами живые клетки.

Хрящевая и костная ткани относятся к скелетным соединительным тканям организма, их объединяет общая функция – опорная, общий источник развития – мезенхима, сходство строения и хрящевые и костные ткани образованы клетками и преобладающим по объему межклеточным веществом, имеющим значительную механическую прочность, что обеспечивает выполнение этими тканями опорной функции.

Хрящевые ткани – ткани, которые входят в состав органов дыхания (носа, гортани, трахеи, бронхов), ушной раковины, суставов, межпозвоночных дисков. У плода ими образована значительная часть скелета. Большинство костей в эмбриогенезе развивается на месте так называемых хрящевых моделей , поэтому хрящевой скелет выполняет провизорную (временную) функцию. Хрящевая ткань играет важную роль в обеспечении роста кости.

Хрящевые ткани подразделяются на три вида: гиалиновый, эластический и волокнистый (коллагеноволокнистую ) хрящ.

Общие структурно-функциональные свойства хрящевых тканей:

1) сравнительно низкий уровень метаболизма (обмена веществ);

2) отсутствие сосудов;

3) способность к непрерывному росту;

4) прочность и эластичность, способность к обратимой деформации.

Гиалиновая хрящевая ткань является наиболее распространенной в организме среди хрящевых тканей. Она образует скелет у плода, вентральные концы ребер, хрящи носа, гортани (частично), трахея, крупные бронхи, покрывает суставные поверхности. Название этой ткани обусловлено сходством на макропрепарате с матовым стеклом (от греч. гиалос – стекло).

Эластическая хрящевая ткань образует хрящи, которые обладают гибкостью и способность к обратимой деформации. Из нее состоят хрящи ушной раковины, наружного слухового прохода, евстахиевой трубы, надгортанника, некоторые хрящи бронхов. Межклеточное вещество на 90% состоит из белка эластина , который образует сеть из эластических волокон в матриксе.

Волокнистая хрящевая ткань образует хрящи, обладающие значительной механической прочностью. Она обнаруживается в межпозвоночных дисках, лонном симфизе, участках прикрепления сухожилий и связок к костям или гиалиновым хрящам. Эта ткань никогда не выявляется изолированно, она всегда переходит в плотную волокнистую соединительную ткань и гиалиновую хрящевую ткань.

В хрящевой ткани нет кровеносных сосудов, поэтому любой хрящ всегда покрыт надхрящницей, исключение составляют суставные хрящи, лишенные надхрящницы (они получают питание из окружающей их синовиальной – суставной жидкости). Надхрящница – это соединительнотканная оболочка, содержащая кровеносные сосуды, нервные и камбиальные элементы хрящевой ткани, ее главная функция – обеспечивать питание хряща, которое происходит диффузно из ее сосудов. Удаление надхрящницы вызывает гибель соответствующего участка хряща, вследствие прекращения его питания.

При старении происходит обызвествление (кальцинация, минерализация) хряща, который затем разрушается клетками – остеокластами.

Интересным фактом является то, что операции с использованием донорского хряща из трупного материала не страдают проблемой отторжения чужеродного материала. Это относится и к операциям по использованию искусственных суставов из искусственных материалов. Это объясняется тем, что в хрящевой ткани нет кровеносных сосудов.

Не секрет, что спортсмены даже в хорошей физической форме и в сравнительно раннем возрасте часто бросают тренировки из-за травм. Большая доля их проблем - связки. Наиболее слабая их часть - хрящевая ткань. Функции поврежденных суставов, оказывается, можно восстанавливать, если вовремя обратить внимание на проблему и создать подходящие условия для лечения и регенерации их клеток.

Ткани в организме человека

Человеческий организм - это сложная и гибкая система, способная к саморегулированию. Состоит она из различных по строению и выполняемым функциям клеток. В них происходит основной обмен веществ. Вместе с неклеточными структурами они объединены в ткани: эпителиальная, мышечная, нервная, соединительная.

Эпителиальные клетки составляют основу кожного покрова. Они выстилают внутренние полости (брюшную, грудную, верхние дыхательные пути, кишечный тракт). Мышечная ткань дает возможность человеку двигаться. Также она обеспечивает перемещение внутренних сред во всех органах и системах. Мускулатура подразделяется на виды: гладкая (стенки полостных органов и сосудов), сердечная, скелетная (поперечнополосатая). Нервная ткань обеспечивает передачу импульсов от мозга. Некоторые клетки способны расти и размножаться, часть из них способны к регенерации.

Соединительная ткань является внутренней средой организма. Она различна по структуре, строению и свойствам. Из нее состоят прочные кости скелета, подкожная жировая клетчатка, жидкие среды: кровь и лимфа. К ней также относится и хрящевая ткань. Функции ее - формирующая, амортизационная, поддерживающая и опорная. Все они играют важную роль и являются необходимыми в сложной системе организма.

строение и функции

Ее характерная черта - рыхлость в расположении клеток. Рассматривая их по отдельности, можно заметить, как четко отделены они друг от друга. Связкой между ними выступает межклеточное вещество - матрикс. Причем у разных видов хрящей оно образовано кроме основного аморфного вещества различными волокнами (эластичными и коллагеновыми). Хотя они имеют общее белковое происхождение, но различаются по свойствам и в зависимости от этого выполняют различные функции.

Все кости организма сформировались из хрящей. Но по мере роста их межклеточное вещество заполнилось кристаллами солей (в основном кальция). В результате кости приобрели прочность и стали частью скелета. Хрящи также выполняют опорные функции. В позвоночнике, находясь между сегментами, они воспринимают постоянные нагрузки (статические и динамические). Ушные раковины, нос, трахея, бронхи - в этих участках ткань играет больше формирующую роль.

Рост и питание хряща осуществляются через надхрящницу. Она в ткани является обязательной частью, кроме суставов. В них между трущимися поверхностями присутствует синовиальная жидкость. Она омывает, смазывает и питает их, отводит продукты обмена.

Структура

В хряще мало клеток, способных к делению, и много пространства вокруг них, заполненного различным по свойствам белковым веществом. Из-за такой особенности процессы регенерации часто в большей мере идут именно в матриксе.

Выделяют два вида клеток ткани: ходнроциты (зрелые) и хондробласты (молодые). Различаются они размерами, местом и способом расположения. Хондроциты имеют округлую форму, и они крупнее. Располагаются парами или в группах до 10 клеток. Хондробласты обычно мельче и находятся в ткани по периферии или же одиночно.

В цитоплазме клеток под оболочкой накапливается вода, имеются включения гликогена. Кислород и питательные вещества поступают в клетки диффузно. Там происходит синтез коллагена и эластина. Они необходимы для формирования межклеточного вещества. От его специфики зависит, какого типа это будет хрящевая ткань. Особенности строения и отличаются от межпозвоночных дисков, в том числе и содержанием коллагена. В в хряще носа межклеточное вещество состоит на 30 % из эластина.

Виды

Как классифицируется Функции ее зависят от преобладания в матриксе специфических волокон. Если в межклеточном веществе больше эластина, то хрящевая ткань будет более пластична. Она почти такая же прочная, но пучки волокон в ней тоньше. Они хорошо выдерживают нагрузки не только на сжатие, но и на растяжение, способны к деформациям без критических последствий. Такие хрящи называют эластическими. Их ткани формируют гортань, ушные раковины, нос.

Если в матриксе вокруг клеток большое содержание коллагена со сложной структурой построения полипептидных цепей, такой хрящ называют гиалиновым. Он чаще всего покрывает внутренние поверхности суставов. Наибольшее количество коллагена сосредоточено в поверхностной зоне. Он играет роль каркаса. Пучки волокон в нем по структуре напоминают трехмерные переплетенные сети спиралевидной формы.

Есть еще одна группа: фиброзные, или волокнистые, хрящи. Они, как и гиалиновые, содержат в межклеточном веществе большое количество коллагена, но он имеет особую структуру. Пучки их волокон не имеют сложного переплетения и расположены вдоль оси наибольших нагрузок. Они более толстые, имеют особую прочность на сжатие, плохо восстанавливаются при деформации. Из такой ткани сформированы межпозвоночные диски, места стыка сухожилий с костями.

Функции

Благодаря особенным биомеханическим свойствам ткань хряща идеально подходит для связывания составляющих опорно-двигательного аппарата. Она способна принимать воздействие сил сжатия и растяжения при движениях, перераспределять их равномерно нагрузке, до некоторой степени поглощать или рассеивать.

Хрящи образуют устойчивые к истиранию поверхности. В совокупности с синовиальной жидкостью такие суставы при допустимых нагрузках способны продолжительное время нормально выполнять свои функции.

Сухожилия - это не хрящевая ткань. Функции их также заключаются в связывании в общую аппарата. Они также состоят из пучков коллагеновых волокон, но их структура и происхождение другие. органов дыхания, ушных раковин кроме того что выполняют формирующую и опорную функции являются местом крепления мягких тканей. Но в отличие от сухожилий мышцы рядом с ними не имеют такой нагрузки.

Особые свойства

В эластических хрящах очень мало сосудов. И это объяснимо, ведь сильная динамическая нагрузка способна их повредить. Как же питается хрящевая соединительная ткань? Функции эти берет на себя межклеточное вещество. В гиалиновом хряще вообще нет сосудов. Их трущиеся поверхности довольно жесткие и плотные. Питание их осуществляется за счет синовиальной жидкости сустава.

В матриксе вода перемещается свободно. Она содержит все необходимые вещества для обменных процессов. Протеогликановые компоненты в хрящах идеально связывают воду. Она как несжимаемая субстанция обеспечивает жесткость и дополнительную амортизацию. При нагрузках вода принимает на себя воздействие, растекается по всему межклеточному пространству и плавно снимает напряжение, препятствуя необратимым критическим деформациям.

Развитие

В теле взрослого человека до 2 % массы приходится на хрящевую ткань. Где она сосредоточена и какие функции выполняет? Хрящевая и костная ткань в эмбриональном периоде не дифференцируется. У зародышей костей нет. Они развиваются из хрящевой ткани и образуются к моменту рождения. Но часть ее так и не окостеневает. Из нее образуются уши, нос, гортань, бронхи. Также она присутствует в суставах рук и ног, сочленениях межпозвоночных дисках, менисках коленей.

Развитие хряща происходит в несколько этапов. Сначала клетки мезенхимы насыщаются водой, округляются, утрачивают отростки и начинают продуцировать вещества для матрикса. После этого происходит их дифференцировка на хондроциты и хондробласты. Первые оказываются плотно окруженными межклеточным веществом. В таком состоянии они могут делиться ограниченное количество раз. После таких процессов образуется изогенная группа. Клетки, оставшиеся на поверхности ткани, становятся хондробластами. В процессе продуцирования веществ матрикса происходит окончательная дифференцировка, формируется структура с отчетливым делением на тонкую кайму и основу ткани.

Возрастные изменения

Функции хрящевой в процессе жизни не меняются. Однако со временем можно заметить признаки старения: ослабевают мышцы и сухожилия суставов, теряется гибкость, беспокоят боли на перемену погоды или при непривычной нагрузке. Такой процесс считается физиологической нормой. К возрасту 30-40 лет симптомы изменений могут в большей или меньшей степени уже начинать причинять неудобства. Старение ткани суставного хряща происходит из-за потери его эластичности. Теряется упругость волокон. Ткань высыхает, разрыхляется.

На гладкой поверхности появляются трещинки, она становится шероховатой. Плавность и легкость скольжения уже невозможна. Поврежденные края разрастаются, в них образуются отложения, в ткани формируются остеофиты. Эластические хрящи стареют с накоплением в межклеточном веществе кальция, но на их функциях (нос, ушные раковины) это почти не отражается.

Нарушение функции хрящевой и костной ткани

Когда и как это может произойти? В большой степени это зависит от того, какую функцию выполняет хрящевая ткань. В межпозвоночных дисках, основная функция которых стабилизирующая и опорная, чаще всего нарушение работы происходит при развитии дистрофических или дегенеративных процессов. Ситуация может привести к смещениям, что, в свою очередь, повлечет сдавливание окружающих тканей. Неизбежен отек, ущемление нервов, сдавливание сосудов.

Чтобы восстановить стабильность, организм пытается бороться с проблемой. Позвонок в месте деформации «подстраивается» под ситуацию, разрастается в виде своеобразных костных выростов (усов). Это также не идет на пользу окружающим тканям: снова отек, ущемление, сжатие. Такая проблема имеет комплексный характер. Нарушения функционирования костно-хрящевого аппарата принято называть остеохондрозом.

Длительное ограничение движения (гипс при травмах) также негативно сказывается на хрящах. Если при чрезмерных нагрузках эластические волокна перерождаются в грубые фиброзные пучки, то при низкой активности хрящи перестают нормально питаться. Синовиальная жидкость плохо перемешивается, хондроциты недополучают питательные вещества, в результате не вырабатывается необходимое количество коллагена и эластина для матрикса.

Вывод напрашивается сам: для нормальной работы суставов хрящи должны получать достаточную нагрузку на растяжение и сжатие. Чтобы это обеспечить, нужно заниматься физическими упражнениями, вести здоровый и активный образ жизни.