Углекислый газ, он же углекислота, он же двуокись углерода…. Углекислый газ в воде

Углекислый газ, или диоксид углерода (СО 2) жизненно необходим растениям. Углерод растения получают именно из СО 2 , в ходе процесса фотосинтеза, а атомы углерода являются основным строительным материалом для органических молекул. И аквариумные растения тут не исключение. При дефиците углекислого газа им будет просто не из чего строить свои ткани, что сильно замедлит или совсем прекратит их рост. С другой стороны, при избытке диоксида углерода в воде аквариума, рыбы начинают задыхаться даже тогда, когда содержание в ней кислорода велико. Происходит это из-за двух очень неприятных эффектов: Бора и Рута, которые обусловлены изменением свойств рыбьего гемоглобина при высоком содержании углекислого газа. Следовательно аквариумист, если только он хочет любоваться живыми, а не пластмассовыми растениями и рыбками, должен уметь поддерживать концентрацию СО 2 в воде своего аквариума в оптимальном диапазоне - таком, чтобы растения могли хорошо расти, а рыбы нормально дышать. О том, как это сделать будет рассказано в данной статье.

Для тех, кто не хочет вникать в суть дела, а хочет сразу получить ответ: оптимальное содержание углекислого газа в воде аквариума составляет 15 - 20 мг/л. А сколько СО 2 растворено в воде Вашего аквариума можно рассчитать по величинам и - КН. Чтобы ничего самому не считать , а только подставить определенные с помощью тестов значения рН и КН в нужные окошки и получить ответ, воспользуйтесь .
А надо ли вообще аквариумисту что-то измерять и затем что-то рассчитывать? Так ли уж необходимо "проверять алгеброй гармонию"? Ведь всё в природе способно к саморегуляции. Аквариум - это тоже по сути своей маленький "кусочек" природы и естественная гармония может установится в нем сама собой. В аквариуме нормальных (классических) пропорций с достаточным, но не чрезмерном количеством рыб, возникает естественным путем. Чтобы оно оставалось устойчивым, надо не , регулярно и не реже, чем раз в неделю примерно пятую часть объёма воды. И это действительно обеспечит стабильный биобаланс. В таком аквариуме рыбы в ходе своей жизнедеятельности будут выделять столько углекислого газа, аммиака и других веществ, сколько нужно для того, чтобы растения получали необходимое минеральное питание и не бедствовали. В свою очередь, хорошо себя чувствующие растения обеспечат рыб достаточным количеством кислорода. Начиная с последней четверти IXX века (со времён Н.Ф. Золотницкого) и на протяжении большей части века XX такие аквариумы были почти у всех аквариумистов и всё у них было хорошо. А что такое многие из них вообще не знали...
Современная же аквариумистика без использования средств определения параметров аквариумной воды (без тестов) просто немыслима.
Что же изменилось? Технические возможности! С помощью специального оборудования мы стали обманывать природу. В маленькой стеклянной коробочке, которую по сути представляет собой типичный комнатный аквариум (а даже солидный для комнатного водоёма объем в 200-300 л сравнительно с природным водоемом очень мал) появилась возможность содержать такое количество живых организмов, которое никак не соизмеримо с естественными ресурсами в ней имеющимися. Взять хотя бы кислород: как естественным путем восполняются его запасы в воде? Про фотосинтез мы уже упомянули, но это днем, а ночью? Без перемешивания или аэрации воды с помощью технических устройств восполнение запасов кислорода в воде происходит очень медленно. Так в совершенно неподвижной воде аквариума у самой его поверхности - на глубине 0.5-1 мм - количество кислорода может быть вдвое большим, чем на глубине всего только нескольких сантиметров. Переход кислорода из воздуха в воду сам по себе происходит крайне неспешно. По вычислениям некоторых исследователей, молекула кислорода в силу одной лишь диффузии за сутки может углубиться не более чем на 2 см! Поэтому без помп и аэраторов, которых в стародавние времена не было, аквариумисту было просто невозможно заселить аквариум "лишними" рыбами - они бы задохнулись. Современное же оборудование позволяет содержать немыслимое по прежнем временам количество рыб, а яркие лампы очень плотно засадить аквариум и даже покрыть все его дно почвопокровными растениями!


Фото 1. Это фрагмент дна современного аквариума. Оно плотно засажено почвопокровными растениями: глоссостигмой (Glossostigma elatinoides), яванским мхом (Vesicularia dubyana) и риччией (Riccia fluitans). Последняя обычно плавает у поверхности, но можно добиться того (и тут это реализовано), чтобы она росла на дне. Для этого аквариум нужно ярко освещать и подавать в воду углекислый газ - СО 2 . Креветка Амано тоже не случайно попала в кадр, надо же кому аккуратно и бережно выбирать остатки корма из гущи рогулек.

Но нельзя забывать, что обманутая природа с того самого мига, как мы живыми организмами ни за что больше уже не отвечает! Устойчивая жизнеспособность такой системы теперь отнюдь не гарантирована. За тот экологический беспредел, который аквариумист устроил в своём аквариуме, в ответе будет он и только он. Даже незначительная его ошибка приведет к экологической катастрофе. А чтобы не ошибаться надо знать в чем нуждаются растения и рыбы и какие гидрохимические параметры воды им подходят. Своевременно контролируя , рН, КН, содержание в воде , , ионов калия и железа можно оперативно вмешиваться в работу перенаселенной и потому нестабильной системы, снабжая её недостающими ресурсами и удаляя избыточные отходы, которые аквариумный "биоценоз" сам не способен утилизировать. Одним из таких важнейших и необходимых для аквариума с живыми растениями ресурсов является углекислый газ - СО 2 .


Фото 2. Снимок сделан на . Это вид аквариума сзади. Искусственный задний фон здесь не предусмотрен. Его создадут растения, чрезвычайно плотно высаженные вдоль задней стенки. Для того, чтобы они могли расти не "задушив" друг друга использовано сразу несколько хитростей, основанных на аквариумных высоких технологиях. Это специальный многослойный не закисающий грунт, богатый доступными для растений минеральными веществами, очень яркий источник света со специально подобранным спектром, и конечно же устройство, обогащающее воду СО 2: баллон с редуктором, счетчик пузырьков, распылитель углекислого газа (реактор) - все произведено фирмой ADA.
Фото 3. Часть системы, обогащающей воду аквариума СО 2 , крупным планом. Снаружи крепится устройство, позволяющее визуально контролировать подачу газа в аквариум - счетчик пузырьков. Внутри расположен диффузор. Для наглядности, устроители семинара пустили газ очень сильно и от диффузора поднимается целый столб пузырьков. Столько углекислого газа аквариумным растениям не надо. В режиме нормальной работы, газа подается гораздо меньше. Таким образом, буйная растительность в "природном" аквариуме Такаси Амано не растет сама собой - для этого требуется специальное оборудование. Так что не такой уж этот аквариум "природный", он скорее техногенный!

В атмосфере земли СО 2 очень немного - всего 0.038%. В сухом атмосферном воздухе при стандартном барометрическом давлении (760 мм. рт. ст.) его парциальное давление составляет всего 0.23 мм. рт. ст. (0.038% от 760). Но и этого очень незначительного количества вполне достаточно, чтобы углекислый газ важным для аквариумиста образом обозначил своё присутствие. К примеру, дистиллированная или хорошо обессоленная вода, постояв в открытой таре достаточное время для того чтобы в ней растворились и пришли в равновесие с атмосферным воздухом газы из смеси которых этот воздух состоит, станет слегка кислой. Это произойдет потому, что в ней растворится углекислый газ.
При указанном выше парциальном давлении углекислого газа его концентрация в воде может достичь 0.6 мг в л, что приведет к снижению рН до значений близких к 5.6. Почему? Дело в том, что некоторые молекулы углекислого газа (не более 0.6%, но и этого достаточно для падения рН) взаимодействуют с молекулами воды с образованием угольной кислоты:

СО 2 +H 2 O <-> H 2 CO 3

Угольная кислота диссоциирует на ион водорода и гидрокарбонатный ион:

H 2 CO 3 <-> H + + HCO 3 -

Вот поэтому и происходит подкисление дистиллированной воды. Напомним, что как раз и отражает содержание ионов водорода в воде. Это отрицательный логарифм их концентрации.
В природе точно также . Поэтому даже в экологически чистых регионах, где в дождевой воде нет серной и азотной кислот, она все равно слегка кислая. Проходя затем через почву, где содержание углекислого газа во много раз выше, чем в атмосфере, вода еще больше им насыщается. Взаимодействуя затем с породами, содержащими известняк, такая вода переводит малорастворимый карбонат кальция в хорошо растворимый гидрокарбонат:

CaCO 3 + H 2 O + СО 2 <-> Ca(HCO 3) 2

Эта реакция обратима. Она может быть смещена в право или влево в зависимости от концентрации углекислого газа. Если содержание СО 2 достаточно продолжительное время остается стабильным, то в такой воде устанавливается углекислотно-известковое равновесие : новых гидрокарбонатных ионов не образуется.
Углекислотно-известковое равновесие может складываться при разных значениях рН, причем соотношение концентраций имеющихся в воде ионов CO 3 2- , HCO 3 - и свободного углекислога газа (СО 2) будет зависеть от рН водного раствора (в нашем случае от рН воды в аквариуме) и температуры. Эта зависимость от водородного показателя при температуре 25 о С представлена на Рис. 1.


Рис 1. Соотношение CO 3 2- , СО 2 и HCO 3 - при температуре 25 о С. Видно, что углекислый газ как таковой (свободная углекислота, или СО 2 ) может присутствовать в воде только в том случае, если рН<8,4 , а при значениях рН, меньших величины 4,3 вся растворенная в воде углекислота пред ставлена только свободным углекислым газом. При рН>8,4 свободной углекислоты в воде нет. Гидрокарбонатный ион (полусвязанная углекислота) присутствует в воде со значением показателя рН, большим чем 4,3, при рН=8,4 вся углекислота находится в полусвязанной форме ( HCO 3 - ). При рН>8,4 воде появляются ионы CO 3 2- (связанная углекислота) , концентрация которых растет вместе с увеличением показателя рН.
По материалам

Если в равновесную систему добавлять углекислый газ, то у глекислотно-известковое равновесие будет нарушено, что приведет к растворению карбонатов кальция и магния. Применительно к условиям аквариума, это означает, что начнут растворяться раковины у улиток, а также известковые грунт, камни и декорации - в таких случаях аквариумисты говорят - грунт " ". Немного забегая вперед, отмечу что "фонящие" грунты и декор непригодны для аквариумов с дополнительной подачей в воду СО 2 . А почему так, будет объяснено ниже.

Е сли тем или иным способом убрать СО 2 из равновесной системы, то из раствора, содержащего гидрокарбонаты, выпадет в виде осадка карбонат кальция. Так происходит, например, при кипячении воды (это известный способ снижения карбонатной жесткости , то есть концентрации в воде Ca(HCO 3) 2 и Mg(HCO 3) 2 . Этот же процесс наблюдается и при простом отстаивании артезианской воды, которая под землёй находилась при повышенном давлении и там в ней растворилось много СО 2 . Подобно газировке в открытой бутылке, оказавшись на поверхности, эта вода отдает лишний углекислый газ до тех пор пока его концентрация не будет соответствовать парциальному давлению СО 2 в окружающем воздухе. При этом в ней может появиться беловатая муть, состоящая из частичек известняка - СаСО 3 . Точно по такому же принципу образуются сталактиты и сталагмиты: сочащаяся из подземных пластов вода освобождается от лишнего углекислого газа и одновременно от карбонатов кальция и магния, которые осаждаются, увеличивая сталактит в размерах. И, по сути, эта же реакция происходит на листьях многих аквариумных растений, когда они активно фотосинтезируя на ярком свету, поглощают весь углекислый газ, растворенный в воде аквариума. Вот тут их листья начинают "седеть", так как они покрываются осадком из карбоната кальция (посмотреть, как это выглядит можно в ). Но раз из воды извлечен весь углекислый газ, то и угольной кислоты в ней больше нет. Если в воде отсутствуют в значимом количестве другие кислоты, то показатель рН должен подняться. Что и происходит. Активно фотосинтезирующие растения, потребив весь имевшийся в воде СО2, могут поднять рН аквариумной воды до 8,4. При таком показателе активной реакции воды в ней уже нет свободных молекул углекислого газа и угольной кислоты, поэтому растения для того, чтобы продолжать фотосинтезировать, вынуждены заниматься добычей диоксида углерода из гидрокарбонатов. Однако, это умеют делать не все виды аквариумных растений, хотя умеют многие.

Ca(HCO 3) 2 -> СО 2 (поглощается растением ) + CaCO 3 + H 2 O

Как правило, они не могут заметно поднять рН еще выше, так как дальнейший рост этого показателя сильно ухудшает функциональное состояние самих растений: фотосинтез, а следовательно изъятие СО 2 из воды аквариума замедляется, и находящийся в воздухе углекислый газ, растворяясь в воде, стабилизирует рН. Аквариумные растения, таким образом, могут буквально душить друг друга. Выигрывают те виды, что лучше извлекают диоксид углерода из гидрокарбонатов, а страдают не умеющие это делать, к примеру роталы, погостемоны и апоногетоны. Именно эти растения считаются у аквариумистов самыми нежными.

Фото 4. Водные растения в этом аквариуме не в лучшем состоянии. Долгое время он существовал в условиях острого дефицита углекислого газа, затем была организована его подача. Результаты очевидны. Свежая зелень макушек говорит сама за себя. Особенно сильно эффект подачи СО 2 заметен на роталах (Rotala macrandra). Лишенные свободного диоксида углерода, они почти погибли, о чем свидетельствуют оголившиеся участки стеблей, но ожили и дали красивые красноватые листья, очень быстро выросшие уже во время подачи углекислого газа.

Те растения, что могут извлекать СО 2 из гидрокарбонатов более живучи. К таковым относят рдесты, валлиснерию, эхинодорусы, наяс, роголистник. Однако густые заросли элодеи способны и их задушить. И все потому, что элодея может еще эффективнее извлекать связанный в гидрокарбонатах углекислый газ:

Ca(HCO 3) 2 -> 2СО 2 (поглощается растением ) + Ca(OH) 2

Этот процесс может привести к опасному не только для других растений, но и для подавляющего большинства аквариумных рыб росту значения рН аквариумной воды до 10.
В аквариумной воде с высокими значениями рН невозможно выращивание целого ряда растений, да и очень многим видам аквариумных рыб щелочная вода определенно не нравится: в ней они могут заболеть и бранхиомикозом. Есть даже особое незаразное заболевание рыб, которое вызывается щелочной водой - . Особенно губительны резкие суточные колебания значения рН, которые происходят при ярком освещении и вызваны активностью растений, добывающих углекислый газ из гидрокарбонатов.

Можно ли исправить положение, усилив аэрацию аквариума, в расчете на то, что благодаря высокой растворимости углекислого газа вода аквариума обогатится СО 2 ? Действительно, при нормальном атмосферном давлении и температуре 20°С в одном литре воды могло бы растворится 1.7 г углекислоты. Но это произошло бы только в том случае, если бы газовая фаза, с которой соприкасалась эта вода, целиком состояла бы из СО 2, то есть парциальное давление углекислого газа составляло бы все 760 мм ртутного столба. А при контакте с атмосферным воздухом, в котором содержится всего 0.038% СО 2 , в 1 л воды может перейти из этого воздуха только 0.6 мг - это и есть равновесная концентрация, соответствующая парциальному давлению углекислого газа в атмосфере на уровне моря. Если концентрация СО 2 в аквариумной воде ниже, то аэрация действительно её поднимет до 0.6 мг/л, но не более! Однако, обычно содержание углекислого газа в воде аквариума все же выше указанной величины и аэрация приведет лишь к потере СО 2 .
Проблему дефицита углекислого газа можно решить путем подачи его в аквариум, тем более, что это отнюдь не сложно. В этом деле можно обойтись даже без дорогого фирменного оборудования, а просто воспользоваться процессами спиртового брожения в сахарном растворе с дрожжами и некоторыми другими крайне нехитрыми устройствами.
Тут, однако, надо отдавать себе отчет в том, что этим мы обманываем природу ещё раз. Бездумное насыщение воды аквариума углекислым газом ни к чему хорошему не приведет. Так можно быстро уморить рыб, а затем и растения. Процесс подачи углекислоты должен находиться под строгим контролем. Установлено, что для рыб концентрация СО 2 в воде аквариума не должна превышать 30 мг/л. А в целом ряде случаев эту величину следует уменьшить хотя бы ещё на треть. Вспомним, что колебания величины рН для рыб и растений вредны, а сильная подача углекислого газа быстро закисляет воду.
Как оценить содержание СО 2 и добиться того, чтобы при подаче этого газа в аквариум значения рН колебались незначительно и оставались в приемлемом и для рыб и для растений диапазоне? Тут нам не обойтись без формул и математических расчетов: гидрохимия аквариумной воды, увы, тема довольно "сухая".

Взаимосвязь между концентрациями в воде пресноводного аквариума углекислого газа, ионов водорода и гидрокарбонатных ионов в диапазоне значений рН от 5 до 8,4 отражает уравнение Хендерсона-Хассельбаха , которое применительно к нашему случаю будет иметь вид:

/ = K1 (1)

Где К1 - кажущаяся константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством углекислого газа в воде - общей аналитически определяемой углекислотой (то есть, как просто растворенными молекулами СО 2 , так и гидратированными молекулами в форме угольной кислоты - Н 2 СО 3). Для температуры 25°С эта константа равна 4.45*10 -7 . Квадратные скобки обозначают .
Преобразование формулы даёт:

(2)

Величины рН и можно узнать с помощью стандартных аквариумных тестов на рН и КН. в аквариумной воде определяет тест на карбонатную жесткость: КН-тест. Следует отметить, что слово "жесткость" в его названии - всего лишь дань традиции. К определению концентраций ионов кальция и магния он прямого отношения не имеет. На самом деле КН-тест определяет щелочность воды (подробнее об этом рассказано в ). В обычном аквариуме, если в воду не добавляли буферные растворы типа КН+ и рН+ и гумматы, основной вклад в щелочность вносят именно гидрокарбонатные ионы, поэтому КН-тест вполне подходит для наших целей. Единственное неудобство его использования связано с необходимостью пересчитывать градусы, в которых он выдает результат, в молярные концентрации (М), что, впрочем, вовсе не сложно. Для этого достаточно величину карбонатной жесткости в градусах , полученную после выполнения процедуры тестирования, разделить на 2.804. Концентрацию ионов водорода, выраженную в величине показателя рН, также надо перевести в М, для этого надо 10 возвести в степень, равную величине рН с отрицательным знаком:

Для перевода рассчитанной по формуле (2) величины из М в мг/л СО 2 надо умножить её на 44000.
Нельзя забывать, что с помощью уравнения Хендерсона-Хассельбаха можно рассчитать концентрацию общей аналитически определяемой углекислоты в аквариуме в том случае, если для стабилизации рН аквариумист не использовал специальных реактивов и содержание гуминовых и прочих органических кислот в его аквариуме умеренное (с достаточной для любителя степенью точности об этом можно судить по цвету аквариумной воды: если она не похожа на " " Амазонии, то есть бесцветна или окрашена только чуть-чуть - значит их там немного).
Те, кто на короткой ноге с компьютером, в частности с электронными таблицами Exel, могут на основе приведенной выше формулы и величины К1 составить подробные таблицы, отражающие содержание углекислоты в зависимости от карбонатной жесткости и рН. Мы же приведем тут сокращенный, но, надеемся, полезный для аквариумистов-любителей вариант такой таблицы и , позволяющий автоматически рассчитать содержание углекислого газа в воде:

Минимальные значения рН воды в аквариуме для заданной карбонатной жесткости, при которых содержание углекислого газа еще не опасно для рыб (красные цифры в столбцах ), и максимально допустимые величины рН при которых растения, не умеющие добывать СО 2 из гидрокарбонатов, хотя и медленно, но еще растут (зелёные цифры в столбцах ). Для 25°С.

Карб. жестк. KH 0,5 1 2 3 4 5 6-7 8-9 10-11 12-13
Моль/л 0,18 0,36 0,71 1,07 1,43 1,78 2,14-2,5 2,85-3,21 3,57-3,92 4,28-5,35
min рН для рыб
(25-28 мг/л СО 2)
5,8 6,1 6,4 6,6 6,7 6,8 6,9 7,0 7,1 7,2
max рН для растений
(6-7 мг/л СО 2)
6,4 6,7 7,0 7,2 7,3 7,4 7,5 7,6 7,7 7,8
"Естественный" рН
(2-3 мг/л СО 2)
6,8 7,1 7,4 7,6 7,7 7,8 7,9 8,0 8,1 8,2
рН, соответствующий парциальному давлению углекислого газа в атмосфере
(0,6 мг/л СО 2)
7,4 7,7 8,0 8,2 8,3 8,4 _ _ _ _

Если Вы решили подавать углекислый газ, то воспользуйтесь этой таблицей для определения оптимального значения рН. Выберите столбец, соответствующий карбонатной жесткости воды в Вашем аквариуме. Отрегулируйте поступление СО 2 так, чтобы величина рН попадала в интервал между красными и зелеными цифрами. К примеру, если КН в аквариуме равен 4, то интервал дупустимых значений рН составит 6,7 - 7,3 . При рН= 6,7 концентрация углекислого газа в воде будет около 28 мг/л - это почти предельная величина для рыбок и очень комфортная для растений. Если концентрацию СО 2 еще немного увеличить (значение рН при этом станет меньше, чем "красная" цифра), то рыбки могут погибнуть. При рН=7,3 рыбкам, даже самым нежным, не грозит отравиться углекислым газом, так как его содержание будет для них абсолютно безопасным: всего лишь около 7 мг/л. Этой концентрации достаточно и для выживания растений, однако бурного роста они демонстрировать не будут. А вот при значениях показателя рН из середины интервала допустимых значений, например при 6,9 (концентрация СО2 будет при этом примерно 17 мг/л), отлично будут себя чувствовать и рыбы, и растения. Поддерживать такие значения как раз и нужно стремиться. Для этого уменьшают подачу СО 2 , если величина рН стремится к нижней границе и увеличивают , если она приближается к верхней . В ходе светового дня активная реакция воды обычно постепенно изменяется, так как количество подаваемого углекислого газа редко точно соответствует потребностям растений: концентрация газа или медленно растет, или падает. Исходная настройка на середину интервала будет способствавать тому, чтобы величина рН не выскочила за его границы. Если подача СО 2 регулируется рН-контроллером, автоматически перекрывающим подачу углекислого газа при снижении рН до заранее заданного уровня, то этот уровень должен быть выставлен так, чтобы он не был ниже допустимого для рыб (красные цифры в таблице). Использование рН-контроллера наиболее эффективно и безопасно, но сам он стоит относительно дорого, а входящий в комплект рН-электрод нуждается в ежемесячной калибровке.

Организовать подачу СО 2 в аквариум можно не только с помощью баллона, наполненного СО 2 , но также и с помощью специальных таблеток, помещаемых в аквариум в особом устройстве (Производство SERA), с помощью брагогенератора, с помощью электронного устройства, вырабатывающего углекислый газ из угольного картриджа и еще одного нехитрого устройства. В простейшем варианте с целью насыщения воды углекислым газом можно в начале светового дня подливать в аквариум слабоминерализованную газированную воду (естественно без пищевых добавок!). В небольших аквариумах это может дать видимый положительный эффект.

В таблице также указаны величины рН, которые при заданной карбонатной жесткости приобретает хорошо аэрируемая вода в комнатном аквариуме ("естественный" уровень рН), в том случае если он умеренно заселен рыбами и если окисляемость воды в нём не высока. Иными словами, если подачу углекислого газа в аквариум вдруг прекратить, а аэрацию включить "на полную", то можно ожидать, что рН воды в течение нескольких часов возрастет примерно до этих величин. Как видно из таблицы, перепад от нижней границы допустимого интервала до "естественного" уровня рН примерно равен 1. Для нежных видов креветок, рыбок и растений он может оказаться слишком сильным и, если не вызовет их гибель, то угнетающее действие окажет. Автоматический контроллер рН таких перепадов не допускает, но если контроллера нет, то они вполне вероятны. Поэтому, если на ночь Вы прекращаете подавать СО 2 в аквариум и включаете аэрацию, то будьте осторожны: рН может слишко резко вырасти. Чтобы этого не допустить, не настраивайте подачу углекислого газа так, чтобы величина показателя рН была вблизи нижней ("красной") границы допустимого интервала, ведь вполне достаточно держаться его середины и тогда перепад дневных и ночных значений рН не превысит 0,5, что совершенно безопасно. Сильная аэрация ночью также далеко не всегда бывает нужна. Но только наблюдения за аквариумом позволят установить необходима ли она (во многих случаях потока воды от помпы фильтра вполне хватает для обеспечения достаточного газообмена).
Цифры в последней строке этой таблицы - это рН воды заданной карбонатной жесткости, находящейся в равновесии с парциальным давлением СО 2 в атмосфере. Видно, что они еще выше. В природных водоемах, в порогах чистых рек, где вода бурлит и отдает в атмосферу весь лишний (неравновесный) углекислый газ, такие значения рН действительно имеют место. В помещениях же и парциальное давление углекислоты в воздухе выше, чем на открытом воздухе, и процессы, идущие в грунте и фильтре аквариума, приводят к образованию углекислого газа. Это обеспечивает большее, чем в естественных условиях, содержание СО 2 в воде аквариумов и вода в них при той же карбонатной жесткости оказывается более кислой.
Теперь разберем еще один важный вопрос: при каких исходных значениях рН воды в аквариуме в него можно подавать углекислый газ? Для этого вновь обратимся к рисунку 1 и нашей полезной табличке. Вспомним, что у гольная кислота, которая образуется при растворении атмосферного углекислого газа в воде, снижает рН дистиллированной воды, КН которой близко к 0, до 5.6, а вода с карбонатной жесткостью, к примеру, равной 5 kH, находясь в равновесии с атмосферными газами, имеет активную реакцию 8.4. Легко прослеживается такая закономерность: чем выше карбонатная жесткость воды, тем она более щелочная. Как видно из рисунка, при величинах рН, больших 8,4 в воде присутствуют карбонатные ионы(CO 3 2- ), которые реагируя со свободным углекислым газом, будут переводить его полусвязанную форму (HCO 3 - ), недоступную для нежных видов аквариумных растений. Мы будем расходовать углекислый газ зря. По этой же причине не подойдут для аквариума-травника и " " грунты. Подавая в аквариум с таким грунтом углекислый газ, мы опять же будем его расходовать на образование гидрокарбонатных ионов - HCO 3 - . Кроме того, высокие значения рН в принципе угнетают жизнедеятельность многих видов аквариумных растений, но зато отлично способствуют . Если у Вас дома из-под крана идет вода с высоким значением рН и, следовательно, с высокой карбонатной жесткостью, то для аквариума-травника с дополнительной подачей углекислого газа она не подходит. Придется использовать установку обратного осмоса для снижения ее минерализации и о том, как это сделать .

Итак, вода с высоким значением рН не подходит. А с низким? Тоже не подходит, так как при этом и карбонатная жесткость также слишком низкая. Объясним почему и это плохо. Из рисунка видно, что при рН=6,4 концентрации свободного углекислого газа и гидрокарбонатного иона примерно равны и они при низкой "карбонатке" совсем невелики - это хорошо видно из таблички: КН=0,5 , рН=6,4 , а содержание СО 2 при этом всего 6 мг/л - этого достаточно лишь для выживая нежных растений. Насыщение воды углекислотой до комфортной для них концентрации 28 мг/л приведет к падению рН до 5,8. Для многих рыб такое значение показателя рН - опасный предел - ниже падать уже нельзя, иначе из-за рыбы начнут испытывать недостаток кислорода и погибать. Однако вся штука в том, что при низкой карбонатной жесткости упасть ниже этого предела до чрезвычайности просто: легкая передозировка СО 2 и все!
Таким образом, теория подсказывает нам, что диапазон значений карбонатной жесткости, наиболее подходящий для аквариума-травника с дополнительной подачей углекислого газа лежит в пределах 2-4 о КН. Это же подтверждено и практическим опытом аквариумистов. Теория и практика в этом вопросе единодушны. Действительно, при оптимальных для рыб и растений концентрациях СО 2 , (это 15 - 20 мг/л), значения показателя рН будут в пределах 6,6 - 6,7 , если больше заботиться о растениях нежели о рыбках, то можно опустить рН и до 6,4. Такая величина рН еще не вызовет отравления () у рыб, подходящих для травника с СО 2 , некомфортна для водорослей и хороша для многих аквариумных растений.

Видео 1. Пример из жизни аквариумной. Аквариум на 300 л с красными неонами, отоцинклюсами, креветками вишнями и "Аманками", там еще и апистограммы Виджета есть (в кадр не попали). Карбонатная жесткость воды в этом аквариуме ниже, чем оптимальная для подачи углекислого газа, и это ограничивает максимально допустимую концентрацию СО 2 величиной 14 мг/л. При карбонатной жесткости KH=1 я не рискую более увеличивать содержание СО2, так как это привело бы к падению показателя рН ниже значения 6,4. Красные неоны легко бы это понижение пережили, а вот в отношении других обитаталелей аквариума у меня такой уверенности нет. Но надо признать, что и 14 мг/л очень хорошо способствует росту растений, хотя "пузыряет" только нимфея, на ротале "Вьетнам" пузырей почти нет. Для того, чтобы они появились, надо еще чуть-чуть подбавить газку..., но нельзя. Будь КН=2, при рН=6,4 содержание углекислого газа составило бы уже 28 мг/л. При такой концентрации роталы пузыряли бы вовсю. СО 2 в этом аквариуме растворяется при помощи флиппера от Деннерле () - "лесенки" , которая работает очень эффективно.

Какое оборудование нужно для подачи углекислого газа в аквариум? Тут лучше всего обратиться к практическому опыту наших форумчан. Читайте:

* Классические пропорции аквариума таковы: ширина равна или не более чем на четверть меньше высоты. Высота не превышает 50 см. Длинна же, в принципе, не ограничена. В качестве примера можно привести аквариум длинной 1 м, шириной 40 см и высотой 50 см. Биологическое равновесие в таком комнатном водоёме установится относительно легко. О конкретных моделях аквариумов с правильными пропорциями можно прочитать .

** Под равновесием с атмосферным воздухом мы понимаем такое состояние воды, когда концентрации (напряжения) растворенных в ней газов соответствуют парциальным давлениям этих газов в атмосфере. Если давление какого-либо газа уменьшится, то молекулы этого газа начнут покидать воду, до тех пор пока снова не будет достигнута равновесная концентрация. И наоборот, если парциальное давление газа над водой увеличится, то большее количество этого газа растворится в воде.


. Это СО2-система для аквариумов объемом до 120 л. В комплекте: реакционный баллон для производства СО2 с контролируемым гелем, стартовая капсула, термоконтейнер, реактор СО2 Dennerle Mini-Flipper, СО2-шланг, счетчик пузырьков, комплект удобрений Dennerle PerfectPlant SystemSet.

О том, зачем и как надо управлять содержанием углекислого газа в аквариуме.
Известно, что углекислый газ жизненно необходим растениям. Ассимилированный в ходе процесса фотосинтеза СО2 является основным строительным материалом для синтеза органических молекул. И аквариумные растения тут не исключение. При дефиците углекислого газа им будет просто не из чего строить свои ткани, что сильно замедлит или совсем прекратит их рост. С другой стороны, при избытке углекислоты в воде аквариума рыбы начинают задыхаться даже тогда, когда содержание в ней кислорода велико (Эффект Рута). Следовательно аквариумист, если только он хочет любоваться живыми, а не пластмассовыми растениями и рыбами, должен уметь поддерживать концентрацию углекислого газа в воде в оптимальном диапазоне.

С достаточной точностью аквариумист-любитель может определить содержание углекислоты в воде аквариума расчетным путем, если он знает величину показателя рН и карбонатную жесткость воды, о чём и будет рассказано в настоящей статье. Но сначала надо дать ответ на такой вопрос: а надо ли вообще аквариумисту что-то измерять и затем что-то рассчитывать? Так ли уж необходимо "проверять алгеброй гармонию"? Ведь всё в природе способно к саморегуляции. Аквариум – это тоже по сути своей маленький "кусочек" природы и он не представляет собой исключения из этого правила. В аквариуме нормальных (классических)* пропорций с достаточным, но не большим количеством рыб, нужные параметры воды обычно устанавливаются сами собой. Чтобы в дальнейшем они не отклонялись от нормы, надо не перекармливать рыбу, регулярно и не реже, чем раз в две недели подменивать примерно четверть или треть объёма воды. И этого действительно будет достаточно. Рыбы в ходе своей жизнедеятельности выделяют достаточное количество углекислоты, нитратов и фосфатов для того, чтобы растения не бедствовали. В свою очередь растения обеспечивают рыб достаточным количеством кислорода. Начиная с последней четверти XIX века (со времён Н.Ф. Золотницкого) и на протяжении большей части века XX так поступали почти все аквариумисты. Всё у них было хорошо, а что такое аквариумные тесты многие из них вообще не знали…

Современная же аквариумистика без использования средств определения параметров аквариумной воды просто немыслима. Что же изменилось?

Технические возможности! С помощью специального оборудования мы стали обманывать природу. В маленькой стеклянной коробочке, которую по сути представляет собой типичный комнатный аквариум (а даже солидный для комнатного водоёма объем в 200-300 л сравнительно с природным водоемом очень мал) появилась возможность содержать такое количество живых организмов, которое никак не соизмеримо с естественными ресурсами в ней имеющимися. К примеру, в совершенно неподвижной и ничем не перемешиваемой воде аквариума у самой его поверхности на глубине 0.5-1 мм количество кислорода может быть вдвое большим, чем на глубине всего только нескольких сантиметров. Переход кислорода из воздуха в воду сам по себе происходит очень медленно. По вычислениям некоторых исследователей, молекула кислорода в силу одной лишь диффузии за сутки может углубиться не более чем на 2 см! Поэтому без технических средств, перемешивающих или аэрирующих воду, аквариумисту просто невозможно заселить аквариум "лишними" рыбами. Современное аквариумное оборудование позволяет посадить в аквариум и некоторое время успешно содержать в нем немыслимое по прежнем временам количество рыб, а яркие лампы очень плотно засадить аквариум растениями и даже покрыть его дно густым слоем ричии!

Это фрагмент дна аквариума. Оно плотно засажено почвопокровными растениями: глоссостигмой (Glossostigma elatinoides), яванским мхом (Vesicularia dubyana) и риччией (Riccia fluitans). Последняя обычно плавает у поверхности, но можно добиться того, чтобы она росла на дне. Для этого аквариум нужно ярко освещать и подавать в воду углекислый газ.
Креветка Амано тоже не случайно попала в кадр, надо же кому аккуратно и бережно выбирать остатки корма из гущи рогулек
Но нельзя забывать, что обманутая природа с того самого мига, как мы сверхплотно заселили аквариум живыми организмами ни за что больше уже не отвечает! Устойчивая жизнеспособность такой системы теперь отнюдь не гарантирована. За тот экологический беспредел, который аквариумист устроил в своём аквариуме, в ответе будет он и только он. Даже незначительная его ошибка приведет к экологической катастрофе. А чтобы не ошибаться надо знать как и почему изменяются хотя бы основные параметры воды. Своевременно их контролируя можно оперативно вмешиваться в работу перенаселенной и потому нестабильной системы, снабжая её недостающими ресурсами и удаляя избыточные отходы, которые аквариумный "биоценоз" сам не способен утилизировать. Одним из таких необходимых для аквариума с живыми растениями ресурсом является углекислый газ.

Снимок сделан на семинаре, проведенном Такаси Амано в Москве в 2003 г. Это вид аквариума сзади. Искусственный задний фон здесь не предусмотрен. Его создадут растения, чрезвычайно плотно высаженные вдоль задней стенки. Для того, чтобы они могли вырасти не "задушив" друг друга использовано сразу несколько хитростей, основанных на аквариумных высоких технологиях. Это специальный многослойный не закисающий грунт, богатый доступными для растений минеральными веществами, очень яркий источник света со специально подобранным спектром, и конечно же устройство, обогащающее воду CO2 (все произведено фирмой ADA)

Часть системы, обогащающей воду аквариума углекислотой крупным планом. Снаружи крепится устройство, позволяющее визуально контролировать подачу пузырьков газа в аквариум. Внутри расположен диффузор. Для наглядности, устроители семинара пустили газ очень сильно и от диффузора поднимается целый столб пузырьков. Столько углекислого газа аквариумным растениям не надо. В режиме нормальной работы, когда газа подается гораздо меньше, пузырьков почти не должно быть видно, так как углекислый газ быстро растворяется в воде. Таким образом, буйная растительность в "природном" аквариуме Такаси Амано не растет сама собой – для этого требуется специальное оборудование. Так что не такой уж этот аквариум "природный", он скорее техногенный!

В атмосфере земли СО2 очень немного – всего 0.03%. В сухом атмосферном воздухе при стандартном барометрическом давлении (760 мм. рт. ст.) его парциальное давление составляет всего 0.2 мм. рт. ст. (0.03% от 760). Но и этого очень незначительного количества вполне достаточно, чтобы он значимым для аквариумиста образом обозначил своё присутствие. К примеру, дистиллированная или хорошо обессоленная вода, постояв в открытой таре достаточное время для того чтобы успеть прийти в равновесие с атмосферным воздухом**, станет слегка кислой. Это произойдет потому, что в ней растворится углекислый газ.

При указанном выше парциальном давлении углекислого газа его концентрация в воде может достичь 0.6 мг в л, что приведет к падению рН до значений близких к 5.6. Почему? Дело в том, что некоторые молекулы углекислого газа (не более 0.6%) взаимодействуют с молекулами воды с образованием угольной кислоты:
CO2+H2O H2CO3
Угольная кислота диссоциирует на ион водорода и гидрокарбонатный ион: H2CO3 H+ + HCO3-
Этого оказывается достаточно для подкисления дистиллированной воды. Напомним, что показатель рН (активная реакция воды) как раз и отражает содержание ионов водорода в воде. Это отрицательный логарифм их концентрации.

В природе точно также подкисляются капли дождя. Поэтому даже в экологически чистых регионах, в которых в дождевой воде нет серной и азотной кислот, она все равно слегка кислая. Проходя затем через почву, где содержание углекислого газа во много раз выше, чем в атмосфере, вода еще больше насыщается углекислотой.

Взаимодействуя затем с породами, содержащими известняк, такая вода переводит карбонаты в хорошо растворимые гидрокарбонаты:

CaCO3 + H2O + CO2 Ca(HCO3)2

Эта реакция обратима. Она может быть смещена в право или влево в зависимости от концентрации углекислого газа. Если содержание СО2 достаточно продолжительное время остается стабильным, то в такой воде устанавливается углекислотно-известковое равновесие: новых гидрокарбонатных ионов не образуется. Если тем или иным способом убрать СО2 из равновесной системы, то она сдвинется влево, и из раствора, содержащего гидрокарбонаты выпадет в виде осадка практически нерастворимый карбонат кальция. Так происходит, например, при кипячении воды (это известный способ снижения карбонатной жесткости, то есть концентрации в воде Ca(HCO3)2 и Mg(HCO3)2). Этот же процесс наблюдается и при простом отстаивании артезианской воды, которая под землёй находилась при повышенном давлении и там в ней растворилось много углекислоты. Оказавшись на поверхности, где парциальное давление СО2 мало, эта вода отдает лишний углекислый газ в атмосферу до тех пор пока не придет с ней в равновесие. При этом в ней появляется беловатая муть, состоящая из частичек известняка. Точно по такому же принципу образуются сталактиты и сталагмиты: сочащаяся из подземных пластов вода освобождается от лишней углекислоты и одновременно от карбонатов кальция и магния. И по сути эта же реакция происходит на листьях многих аквариумных растений, когда они активно фотосинтезируют на ярком свету, а углекислый газ в замкнутом пространстве аквариума заканчивается. Вот тут их листья начинают "седеть", так как они покрываются корочкой карбоната кальция.Но раз из воды извлекается вся свободная углекислота, то и рН при этом неумолимо растёт. Обычно растения могут поднять рН аквариумной воды до 8.3-8.5. При таком показателе активной реакции воды в ней почти совсем нет молекул углекислого газа и растения (те виды, что умеют это делать, а умеют многие) занимаются добычей углекислоты из бикарбонатов.

Ca(HCO3)2 –> CO2 (поглощается растением) + CaCO3 + H2O

Как правило, они не могут поднять рН еще выше, так как его дальнейший рост сильно ухудшает функциональное состояние самих растений: фотосинтез, а следовательно изъятие СО2 из системы замедляется, и находящийся в воздухе углекислый газ, растворяясь в воде, стабилизирует рН. Аквариумные растения, таким образом, могут буквально душить друг друга. Выигрывают те виды, что лучше извлекают углекислоту из гидрокарбонатов, а страдают не умеющие это делать, к примеру, роталы и апоногетоны мадагаскарской группы. Именно такие растения считаются у аквариумистов самыми нежными.

Водные растения в этом аквариуме не в лучшем состоянии. Долгое время он существовал в условиях острого дефицита углекислого газа, затем была организована его подача. Результаты очевидны. Свежая зелень макушек говорит сама за себя. Особенно сильно эффект подачи углекислоты заметен на роталах (Rotala macrandra). Они почти погибли, о чем свидетельствуют почти полностью лишенные листьев нижние участки стеблей, но ожили и дали красивые красноватые листья, очень быстро выросшие уже во время подачи газа

Те растения, что могут расщеплять гидрокарбонаты более живучи. К таковым относят рдесты, валлиснерию, эхинодорусы. Однако густые заросли элодеи способны и их задушить. Элодея может еще эффективнее извлекать связанную в гидрокарбонатах углекислоту:
Ca(HCO3)2 –> 2CO2(поглощается растением) + Ca(OH)2
Если карбонатная жесткость воды достаточно велика, то этот процесс может привести к опасному не только для других растений, но и для подавляющего большинства аквариумных рыб росту значения рН аквариумной воды до 10. В аквариумной воде с высокими значениями рН невозможно выращивание целого ряда растений, да и очень многим видам аквариумных рыб щелочная вода определенно не нравится.

Можно ли исправить положение усилив аэрацию аквариума в расчете на то, что благодаря высокой растворимости углекислого газа вода аквариума обогатится СО2? Действительно, при нормальном атмосферном давлении и температуре 20°С в одном литре воды могло бы растворится 1.7 г углекислоты. Но это произошло бы только в том случае, если бы газовая фаза с которой соприкасалась эта вода целиком состояла бы из СО2. А, при контакте с атмосферным воздухом, в котором содержится всего 0.03% СО2 в 1 л воды может перейти из этого воздуха только 0.6 мг – это и есть равновесная концентрация, соответствующая парциальному давлению углекислого газа в атмосфере на уровне моря. Если содержание углекислоты в аквариумной воде ниже, то аэрация действительно его поднимет до концентрации 0.6 мг/л и не более! Но обычно содержание углекислого газа в воде аквариума все же выше указанной величины и аэрация приведет лишь к потере СО2.

Проблему можно решить искусственно подавая в аквариум углекислый газ, тем более, что это отнюдь не сложно. В этом деле можно обойтись даже без фирменного оборудования, а просто воспользоваться процессами спиртового брожения в сахарном растворе с дрожжами и некоторыми другими крайне нехитрыми устройствами, о которых мы вскоре расскажем.

Тут, однако, надо отдавать себе отчет в том, что этим мы обманываем природу ещё раз. Бездумное насыщение воды аквариума углекислым газом ни к чему хорошему не приведет. Так можно быстро уморить рыб, а затем и растения. Процесс подачи углекислоты должен находиться под строгим контролем. Установлено, что для рыб концентрация СО2 в воде аквариума не должна превышать 30 мг/л. А в целом ряде случаев эта величина должна быть хотя бы ещё на треть меньше. Вспомним, что и сильные колебания величины рН для рыб также вредны, а дополнительная подача углекислого газа быстро закисляет воду.

Как оценить содержание СО2 и добиться того, чтобы при насыщении воды этим газом значения рН колебались незначительно и оставались в приемлемом для рыб диапазоне? Тут нам будет не обойтись без формул и математических расчетов: гидрохимия аквариумной воды, увы, тема довольно "сухая".

Взаимосвязь между концентрациями в воде пресноводного аквариума углекислого газа, ионов водорода и гидрокарбонатных ионов отражает уравнение Хендерсона-Хассельбаха, которое применительно к нашему случаю будет иметь вид:
/ = K1
где К1 – кажущаяся константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством углекислого газа в воде – общей аналитически определяемой углекислотой (то есть, как просто растворенными молекулами СО2, так и гидратированными молекулами в форме угольной кислоты - Н2СО3). Для температуры 25°С эта константа равна 4.5*10-7. Квадратные скобки обозначают молярные концентрации.

Преобразование формулы даёт:

Величины рН и можно определить с помощью стандартных аквариумных тестов. Следует отметить, что KH-тест определяет именно содержание гидрокарбонатных ионов в воде (а не ионов кальция) и подходит для наших целей. Единственное неудобство его использования связано с необходимостью пересчитывать градусы в М, что, впрочем, вовсе не сложно. Для этого достаточно величину карбонатной жесткости, полученную после выполнения процедуры тестирования в градусах, разделить на 2.804. Концентрацию ионов водорода, выраженную в рН также надо перевести в М, для этого надо 10 возвести в степень равную величине рН с отрицательным знаком:

Для перевода рассчитанной по формуле (2) величины из М в мг/л СО2 надо умножить её на 44000.

С помощью уравнения Хендерсона-Хассельбаха можно рассчитать концентрацию общей аналитически определяемой углекислоты в аквариуме в том случае, если для стабилизации рН аквариумист не использовал специальных реактивов и содержание гуминовых и прочих органических кислот в его аквариуме умеренное (с достаточной для любителя степенью точности об этом можно судить по цвету аквариумной воды: если она не похожа на "чёрные воды" Амазонии, бесцветна или окрашена только чуть-чуть - значит их там немного).

Те, кто на короткой ноге с компьютером, в частности с электронными таблицами Exel, могут на основе приведенной выше формулы и величины К1 составить подробные таблицы, отражающие содержание углекислоты в зависимости от карбонатной жесткости и рН. Мы же приведем тут сокращенный, но, надеемся, полезный для аквариумистов-любителей вариант такой таблицы, позволяющий тут же автоматически рассчитать содержание углекислого газа в воде:
Минимальные значения рН воды в аквариуме для заданной карбонатной жесткости, при которых содержание углекислоты еще не опасно для рыб (красные цифры в столбцах), и максимально допустимые величины рН при которых у растений, не умеющих добывать углекислоту из гидрокарбонатов ещё достаточно эффективно идёт фотосинтез. Для 25°С.

Если вы решили подавать углекислый газ в аквариум, то отрегулируйте его подачу так, чтобы величины рН для соответствующей карбонатной жесткости попадали в интервал между красными и зелеными цифрами. В ходе светового дня активная реакция воды будет изменяться (обычно рН повышается) и это обстоятельство надо учесть при настройке оборудования. Пытайтесь настроиться на середину интервала, тогда величина рН скорее всего не выскочит за его границы. Если подача СО2 регулируется рН-контроллером, перекрывающим подачу газа при снижении рН до заранее заданного уровня, то этот уровень не должен быть ниже минимально допустимого для рыб. Использование рН-контроллера наиболее эффективно и безопасно, но сам он стоит относительно дорого.

На переднем плане этой фотографии еще одна ротала (Rotala wallichii). Слева - маяка речная (Mayaca fluviatilis). Она тоже любительница свободного углекислого газа в воде. При подходящем освещении и содержании углекислоты в аквариуме порядка 15-20 мг/л эти водные растения покрывается пузырьками кислорода, настолько эффективно идет фотосинтез

Кроме того, подкормить растения СО2 можно с помощью специальных таблеток, помещаемых в аквариум в особом устройстве. Они постепенно отдают в воду углекислоту. С этой же целью можно в начале светового дня подливать в аквариум слабоминерализованную газированную воду (естественно без пищевых добавок!). Приведенные в этой статье таблица и калькулятор помогут оценить насколько эти меры эффективны.

В таблице также указаны величины рН, которые при заданной карбонатной жесткости приобретает хорошо аэрируемая вода в комнатном аквариуме, в том случае если он умеренно заселен рыбами и если окисляемость воды в нём не высока. Иными словами, если подача углекислоты в аквариум вдруг прекратится, то можно ожидать, что рН воды в течение нескольких часов возрастет примерно до этих величин. Цифры в последней строке этой таблицы – это рН воды заданной карбонатной жесткости находящейся в равновесии с атмосферой. Видно, что они еще выше. В природных водоемах, в порогах чистых рек, где вода бурлит и отдает в атмосферу весь лишний (неравновесный) углекислый газ, такие значения рН действительно имеют место. В помещениях же и парциальное давление углекислоты в воздухе выше, чем на открытом воздухе, и процессы, идущие в грунте и фильтре аквариума приводят к образованию углекислого газа и ионов водорода. Всё это обеспечивает большее, чем в естественных условиях содержание углекислоты в воде аквариумов и вода в них при той же карбонатной жесткости оказывается более кислой.

Теперь обратим внимание на такой факт. Угольная кислота, которая образуется при растворении атмосферного углекислого газа в воде снижает рН дистиллированной воды до 5.6, а вода с карбонатной жесткостью, к примеру, равной 5 kH, находясь в равновесии с атмосферными газами, имеет активную реакцию 8.4. Легко прослеживается такая закономерность: чем выше карбонатная жесткость воды, тем она более щелочная. Вообще-то это правило известно многим, но не все аквариумисты отдают себе отчёт в том, что речь идет именно о карбонатной жесткости. Действительно, если иметь дело только с природными пресными водами, в которых карбонатная жесткость, как правило, вносит весьма значительный вклад в общую, об этом можно и не задумываться, но вот в искусственно приготовленной воде все может быть по-другому. Например, добавление хлористого кальция поднимет жесткость воды, но не рН. То, что природные воды обычно имеют слабощелочную активную реакцию связано именно с наличием в них гидрокарбонатных ионов. Вместе с растворенной в воде углекислотой, они образуют углекислотно-гидрокарбонатную буферную систему, которая тем сильнее стабилизирует рН воды в области щелочных значений, чем выше концентрация гидрокарбонатов (карбонатная жесткость). Чтобы понять почему так происходит и выбрать оптимальные для аквариума значения карбонатной жесткости надо снова обратиться к формуле Хендерсона-Хассельбаха.

В.Ковалёв,

*Классические пропорции аквариума таковы: ширина равна или не более чем на четверть меньше высоты. Высота не превышает 50 см. Длинна же, в принципе, не ограничена. В качестве примера можно привести аквариум длинной 1 м, шириной 40 см и высотой 50 см. Биологическое равновесие в таком комнатном водоёме установится относительно легко.

**Под равновесием с атмосферным воздухом мы понимаем такое состояние воды, когда концентрации (напряжения) растворенных в ней газов соответствуют парциальным давлениям этих газов в атмосфере. Если давление какого-либо газа уменьшится, то молекулы этого газа начнут покидать воду, до тех пор пока снова не будет достигнута равновесная концентрация. И наоборот, если парциальное давление газа над водой увеличится, то большее количество этого газа растворится в воде

Вы уже знаете, что при выдохе из легких выходит углекислый газ. А вот что вам известно об этом веществе? Наверное, немного. Сегодня я отвечу на все вопросы, касающиеся углекислого газа.

Определение

Это вещество в нормальных условиях является бесцветным газом. Во многих источниках его могут называть по-разному: и оксидом углерода (IV), и угольным ангидридом, и двуокисью углерода, и диоксидом углерода.

Свойства

Углекислый газ (формула СО 2) является бесцветным газом, имеющим кислые запах и вкус, растворимым в воде веществом. Если его как следует охладить, то образуется снегообразная масса, называемая сухим льдом (фотография ниже), которая сублимирует при температуре -78 о С.

Является одним из продуктов гниения или горения любого органического вещества. Растворяется в воде только при температуре 15 о С и только в том случае, если отношение вода:углекислый газ равно 1:1. Плотность углекислого газа может быть разной, но в стандартных условиях она равняется 1,976 кг/м 3 . Это если он находится в газообразном виде, а в других состояниях (жидком/газообразном) значения плотности тоже будут другими. Данное вещество является кислотным оксидом, его добавление в воду приводит к получению угольной кислоты. Если соединить углекислый газ с любой щелочью, то в результате последующей реакции образуются карбонаты и гидрокарбонаты. Этот оксид не может поддерживать горение, кроме некоторых исключений. Это активные металлы, и при реакции такого вида они забирают у него кислород.

Получение

Углекислый и еще некоторые газы в больших количествах выделяются, когда производят алкоголь или разлагаются природные карбонаты. Затем полученные газы проходят промывание растворенным карбонатом калия. Далее следует поглощение ими углекислого газа, продуктом данной реакции является гидрокарбонат, при нагревании раствора которого получают искомый оксид.

Но сейчас его с успехом заменяет растворенный водой этаноламин, который абсорбирует содержащийся в дымовом газе оксид углерода и отдает его при нагревании. Также этот газ является побочным продуктом тех реакций, при которых получают чистые азот, кислород и аргон. В лаборатории немного углекислоты получается, когда карбонаты и гидрокарбонаты взаимодействуют с кислотами. Еще она образуется, когда реагируют пищевая сода и лимонный сок или тот же гидрокарбонат натрия и уксус (фото).

Применение

Пищевая промышленность не может обойтись без использования углекислоты, где она известна в качестве консерванта и разрыхлителя, имеющего код E290. Ее в виде жидкости содержит любой огнетушитель.

Также оксид четырехвалентного углерода, который выделяется в процессе брожения, служит хорошей подкормкой аквариумным растениям. Он содержится и во всем известной газировке, которую многие довольно часто покупают в продуктовом магазине. Сварка проволокой происходит в углекислой среде, но если температура данного процесса очень высока, то он сопровождается диссоциацией углекислоты, при которой выделяется кислород, окисляющий металл. Тогда сварка не обходится без раскислителей (марганца или кремния). Углекислым газом накачивают велосипедные колеса, он присутствует и в баллончиках пневматического оружия (такая его разновидность называется газобаллонной). Также данный оксид в твердом состоянии, называемый сухим льдом, нужен как хладагент в торговле, научных исследованиях и при починке некоторой техники.

Заключение

Вот до чего полезен для человека углекислый газ. И не только в промышленности, он играет и важную биологическую роль: без него не может происходить газообмен, регуляция сосудистого тонуса, фотосинтез и многие другие природные процессы. Но его переизбыток или недостача в воздухе некоторое время могут негативно влиять на физическое состояние всех живых организмов.

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.


Упадок сил, слабость, больная голова, депрессия - знакомо такое состояние? Чаще всего так бывает осенью и зимой, а плохое самочувствие списывают на нехватку солнечного света. Но дело не в нём, а в избыточном содержании углекислого газа в воздухе, которым вы дышите. Ситуация с уровнем СО₂ в жилых помещениях и транспорте в нашей стране поистине катастрофическая. Духота, повышенная влажность и плесень также являются следствием отсутствующей вентиляции. Герметичные пластиковые окна и кондиционеры лишь усугубляют ситуацию. А вы знаете, что при двухкратном превышении (относительно уличного фона) уровня углекислого газа в воздухе мозговая активность снижается в 2 раза? Кстати, именно зевающие студенты на лекциях являются показателем повышенного содержания CO₂ в аудитории. А очень часто вентиляция отсутствует и в офисных зданиях. О какой производительности может быть речь, если у человека просто не работают мозги?

Итак, начнём с основ. Человеку при дыхании поглощает кислород, а выделяет углекислый газ. Также углекислый газ выделяется при сжигании углеводородов. Средний уровень СО₂ на нашей планете в настоящий момент составляет около 400 PPM (Parts per million - частей на миллион, или 0,04%) и постоянно растет вследствие постоянного роста потребления нефтепродуктов. При этом стоит знать, что деревья поглощают углекислый газ и именно в этом заключается их главная функция (а не как ошибочно считают, что они лишь вырабатывают кислород).

Пока человек находится на открытом воздухе - проблем нет, но они начинаются когда он оказывается в помещении. Если человека запереть в герметичной комнате без притока свежего воздуха, то он умрет не от недостатка кислорода, как ошибочно считает большинство, а от многократного превышения уровня углекислого газа, который этот человек сам же и выработал в легких. Отставим проблемы вентиляции общественного транспорта (про это я напишу отдельно) и обратим наше внимание на городские квартиры/загородные дома, в которых массово отсутствует вентиляция.

При этом человек проводит в своем доме/квартире минимум треть своей жизни, а в реальности половину - нельзя экономить на своем собственном здоровье!


2. Проблема повышенного содержания CO₂ в воздухе особенно актуальна в холодное время года, т.к. летом практически у всех постоянно открыты форточки. А с наступлением холодов форточки открывают всё реже и реже, сводя в конечном итоге к эпизодическому проветриванию. И, какое совпадение, именно в холодное время года появляется депрессия, сонливость и упадок сил.

3. Раньше даже была такая традиция - заклеивать щели на окнах перед холодами. Часто вместе с форточками и полностью исключали поступение свежего воздуха в дом. Я еще раз акцентирую внимание, что свежий воздух нужен не потому, что в нём есть необходимый для дыхания кислород, а для того, чтобы путём замещения воздуха в помещении снизить избыточное содержание углекислого газа.

4. Многие думают, что у них же есть вытяжка (в квартирах как минимум на кухне и в санузле), вот через неё и будет вентилироваться помещение. Ага, вдобавок установив пластиковые окна, которые полностью герметичны. Но как воздух пойдет в вытяжку если у вас нет притока в виде либо щелей в рамах, либо открытого окна? А при хорошей тяге обычно тянет воздух из подъезда.

5. Хуже только поставить кондиционер в виде сплит-системы и пользоваться им при закрытых окнах. Запомните, при работе кондиционера НЕЛЬЗЯ закрывать окна! Вот современный герметичный загородный дом, у которого нет щелей в ограждающих конструкциях. И не надо вестись на рассказы о том, что дерево или газобетон "дышат" и следовательно можно наплевать на вентиляцию. Запомните, под этим термином подразумевается высокая паропроницаемость материала, а не способность подавать в дом свежий уличный воздух.

6. Большинство ограничивается вентилятором на вытяжке из санузла и кухни. Окей, включили вентилятор, в доме закрыты все окна и двери. Какой будет результат? Правильно, в доме будет разрежение, ведь новому воздуху неоткуда взяться. Чтобы естественная вентиляция работала, в дом должен поступать свежий воздух.

7. Для измерений уровня углекислого газа в воздухе сейчас появились относительно доступные датчики с NDIR-сенсором. Не дисперсионный инфракрасный метод (NDIR) основан на изменении интенсивности ИК-излучения до и после поглощения в инфракрасном детекторе с избирательной чувствительностью. Изначально я собирался купить такой датчик на aliexpress в прошлом году (тогда он стоил примерно 100 долларов), но выросшая цена вследствие роста курса доллара заставила задуматься и поискать альтернативные варианты. Неожиданно этот датчик нашелся в России под российским брендом за те же 100 долларов по прошлогоднему курсу. Итого, на Яндекс.Маркете я нашел самое выгодное предложение и приобрел датчик по цене 3500 рублей. Модель называется MT8057. Разумеется, у датчика есть погрешность, но она не важна, когда речь идет о том, что нам важны измерения с превышением концентрации углекислого газа в несколько раз выше нормы.

8. Закрытые пластиковые окна, кондиционеры - все это ерунда по сравнению с газовой плитой в квартире (для фото я зажег газовую горелку, т.к. для съемки плиты её надо было помыть).

9. Итак, всё внимание на график. Кухня 9 квадратных метров, потолки высотой 3 метра, открытая дверь на кухню (!), закрытое окно, имеется вытяжка с естественным побуждением (летом тяга слабая), один человек. Датчик стоит на высоте 1 метр от пола, на обеденном столе. "Нормальный" уровень СО₂ в помещении без людей около 600 PPM. Приходит один человек - уровень СО₂ моментально повышается. Уходит - падает. Приходит снова - опять повышается. И после этого включает одну (!) газовую конфорку. Уровнь СО₂ практически моментально поднимается выше 2000 PPM. Тревога! Открываем форточку. Наблюдаем как медленно понижается концентрация углекислого газа в воздухе. А добавьте сюда еще 1-2 человек. Даже если не включать газовую плиту, то 3 взрослых человека не выполняя тяжелую физическую работу поднимают уровень CO₂ в комнате до критической отметки за 30 минут.

Готовите на газовой плите? Обязательно нужно открыть форточку и включить вытяжку (сделать и то и другое одновременно).

Включили кондиционер? Обязательно открыть окно.

Просто находитесь в комнате? Обязательно открыть форточку. А если в комнате много людей - открыть окно.

И ночью, во время сна окно необходимо держать открытым.

Короче говоря, у вас либо должен быть приточный вентиляционный канал, либо постоянно открытое окно.

10. Что касается деревьев и чем они могут быть полезны. Их важнейшая функция в процессе роста - поглощение углекислого газа. Мало кто задумывается почему дрова горят и откуда в них столько энергии. Так эта энергия в виде углерода и накапливается в стволе дерева в результате поглощения углекислого газа. А кислород деревья вырабатывают как побочный продукт в реакции фотосинтеза.

11. Открыть окно в теплое время года не составляет труда и в целом летом проблема не так актуальна (кроме случаев использования кондиционеров с закрытыми окнами). Проблемы начинаются зимой, ведь постоянно открытой форточку никто не держит, это огромные неконтролируемые потери тепла и будет банально холодно. Вот именно в этот момент и стоит поднимать тревогу. Здоровье - бесценно.

Проблема очень серьезна и носит глобальный характер. Я, например, до осени прошлого года вообще не задумывался о важности вентиляции для здоровья: что в квартире, что в загородном доме. Если заглянуть в прошлое, то именно регулярные осенние депрессии, сонливость и плохое настроение в течение холодного времени года в городской квартире сподвигли думать в сторону того, что нужно так сказать уезжать из города и строить , т.к. осенью-зимой болела голова и была общая слабость организма при нахождении в городе. Но как только я выезжал на природу - проблема исчезала. Я списывал всё это не нехватку солнечного света, но дело было не в нём. Зимой я переставал держать открытым окно (холодно же) и получал многократное превышение СО₂ в квартире.

Самое простое и доступное решение проблемы - постоянно держать открытым окно, либо проветривать ориентируясь на показатели с датчика CO₂. Нормальным уровнем CO₂ в помещении может считаться концентрация до 1000 PPM, если выше - нужно срочно проветривать. Косвенным показателем высокой концентрации углекислого газа в воздухе можно считать влажность. Если без объективных причин и понижения температуры в помещении начинает повышаться влажность - значит и растет уровень CO₂.

Опасность повышенной концентрации углекислого газа в воздухе заключается в том, что человеческий организм реагирует с очень большой задержкой. К тому моменту, когда вы почувствовали, что в комнате душно и надо проветрить - вы уже минимум полчаса находились в помещении с повышенным содержанием CO₂ в воздухе.

В следующем посте я расскажу о том, какие проблемы есть с вентиляцией в общественном транспорте (автобусы, поезда, самолеты). А также покажу как правильно организовать вентиляцию в загородном доме, про которую все почему-то забывают.

Продолжение следует.

Статьи по теме, для самостоятельного изучения.